1 |
段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法. 通信学报, 2022, 43 (3): 1- 13.
doi: 10.11959/j.issn.1000-436x.2022050
|
|
DUAN X Y , FU Y , WANG K . Multi-dimensional time series anomaly detection method based on VAE-WGAN. Journal on Communications, 2022, 43 (3): 1- 13.
doi: 10.11959/j.issn.1000-436x.2022050
|
2 |
严银凯, 彭宁宁, 易丽莎. 基于持续同调的倾斜时间序列分类算法. 计算机工程, 2024, 50 (6): 110- 123.
doi: 10.19678/j.issn.1000-3428.0068354
|
|
YAN Y K , PENG N N , YI L S . Skewed time series classification algorithm based on persistent Homology. Computer Engineering, 2024, 50 (6): 110- 123.
doi: 10.19678/j.issn.1000-3428.0068354
|
3 |
ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D. C., USA: IEEE Press, 2018: 727-736.
URL
|
4 |
SIEGEL B . Industrial anomaly detection: a comparison of unsupervised neural network architectures. IEEE Sensors Letters, 2020, 4 (8): 1- 4.
doi: 10.1109/LSENS.2020.3007880
|
5 |
毛业栋, 张春辉, 陈杰. 融合特征分析及机器学习的可演进变压器故障诊断模型. 计算机工程, 2024, 50 (8): 379- 388.
doi: 10.19678/j.issn.1000-3428.0068224
|
|
MAO Y D , ZHANG C H , CHEN J . Evolvable transformer fault diagnosis model combined feature analysis and machine learning. Computer Engineering, 2024, 50 (8): 379- 388.
doi: 10.19678/j.issn.1000-3428.0068224
|
6 |
URL
|
7 |
ZHANG K X , WEN Q S , ZHANG C L , et al. Self-supervised learning for time series analysis: taxonomy, progress, and prospects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (10): 6775- 6794.
doi: 10.1109/TPAMI.2024.3387317
|
8 |
JADIDI Z, PAL S. Explainable anomaly detection in IoT networks[M]//PAL S, JADIDI Z, FOO E, et al. Smart Sensors, Measurement and Instrumentation. Berlin, Germany: Springer, 2023: 85-94.
URL
|
9 |
PANG G S , SHEN C H , CAO L B , et al. Deep learning for anomaly detection. ACM Computing Surveys, 2022, 54 (2): 1- 38.
|
10 |
AMER M, GOLDSTEIN M. Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer[C]//Proceedings of the 3rd RapidMiner Community Meeting and Conference. Washington D. C., USA: IEEE Press, 2012: 1-12.
URL
|
11 |
ZHUO Y , GE Z Q . Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis. IEEE Transactions on Industrial Informatics, 2021, 17 (11): 7535- 7545.
doi: 10.1109/TII.2021.3053106
|
12 |
LI F F , FERGUS R , PERONA P . One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (4): 594- 611.
doi: 10.1109/TPAMI.2006.79
|
13 |
FEI F T, LIU K M, ZHOU Z H. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2008: 1-10.
|
14 |
BREUNIG M M, KRIEGEL H-P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2000: 93-104.
URL
|
15 |
陈龙, 张建林, 彭昊, 等. 多尺度注意力与领域自适应的小样本图像识别. 光电工程, 2023, 50 (4): 220232.
URL
|
|
CHEN L , ZHANG J L , PENG H , et al. Few-shot image classification via multi-scale attention and domain adaptation. Opto-Electronic Engineering, 2023, 50 (4): 220232.
URL
|
16 |
KWON D , KIM H , KIM J , et al. A survey of deep learning-based network anomaly detection. Cluster Computing, 2019, 22 (1): 949- 961.
URL
|
17 |
DU B W , SUN X X , YE J C , et al. GAN-based anomaly detection for multivariate time series using polluted training set. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (12): 12208- 12219.
doi: 10.1109/TKDE.2021.3128667
|
18 |
FENG C, TIAN P W. Time series anomaly detection for cyber-physical systems via neural system identification and Bayesian filtering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 20-28.
URL
|
19 |
AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 1-7.
URL
|
20 |
吴鑫. 基于VAE的多维时间序列异常检测方法研究[D]. 北京: 中国矿业大学, 2022.
URL
|
|
WU X. Research on anomaly detection method of multidimensional time series based on VAE[D]. Beijing: China University of Mining and Technology, 2022.
|
21 |
URL
|
22 |
ZHAO D F , LIU S L , GU D , et al. Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder. Measurement Science and Technology, 2020, 31 (3): 035004.
doi: 10.1088/1361-6501/ab55f8
|
23 |
周壮, 周凤. 基于E2E Deep VAE-LSTM的轴承退化预测应用研究. 计算机应用研究, 2022, 39 (7): 2091- 2097.
URL
|
|
ZHOU Z , ZHOU F . Application research on bearing degradation prediction based on E2E Deep VAE-LSTM. Application Research of Computers, 2022, 39 (7): 2091- 2097.
URL
|
24 |
|
25 |
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测. 软件学报, 2020, 31 (3): 726- 747.
doi: 10.13328/j.cnki.jos.005907
|
|
DING X O , YU S J , WANG M X , et al. Anomaly detection on industrial time series based on correlation analysis. Journal of Software, 2020, 31 (3): 726- 747.
doi: 10.13328/j.cnki.jos.005907
|
26 |
|
27 |
ZHANG W Q, ZHANG C, TSUNG F. GRELEN: multivariate time series anomaly detection from the perspective of graph relational learning[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna, Austria: International Joint Conferences on Artificial Intelligence Organization, 2022: 15-20.
URL
|
28 |
HAN S, WOO S S. Learning sparse latent graph representations for anomaly detection in multivariate time series[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 2977-2986.
URL
|