[1] ZHENG P, YANG Y, LIU Z W, et al. Parallel and automatic isotropic tetrahedral mesh generation of misaligned assemblies[J]. CCF Transactions on High Performance Computing, 2020, 2(2):149-163. [2] MAROT C, PELLERIN J, REMACLE J F. One machine, one minute, three billion tetrahedra[EB/OL].[2023-02-10]. http://arxiv.org/abs/1805.08831v3. [3] LÖHNER R. Recent advances in parallel advancing front grid generation[J]. Archives of Computational Methods in Engineering, 2014, 21(2):127-140. [4] CHRISOCHOIDES N, CHERNIKOV A, FEDOROV A, et al. Towards exascale parallel delaunay mesh generation[C]//Proceedings of the 18th International Meshing Roundtable. Berlin, Germany:Springer, 2009:319-336. [5] DE COUGNY H L, SHEPHARD M S. Parallel volume meshing using face removals and hierarchical repartitioning[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 174(3/4):275-298. [6] YU F, ZENG Y, GUAN Z Q, et al. A robust Delaunay-AFT based parallel method for the generation of large-scale fully constrained meshes[J]. Computers&Structures, 2020, 228(9/10):781-798. [7] ANDRÄ H, GLUCHSHENKO O N, IVANOV E G, et al. Automatic parallel generation of tetrahedral grids by using a domain decomposition approach[J]. Computational Mathematics and Mathematical Physics, 2008, 48(8):1367-1375. [8] CHEN J J, XIAO Z F, ZHENG Y, et al. Scalable generation of large-scale unstructured meshes by a novel domain decomposition approach[J]. Advances in Engineering Software, 2018, 121:131-146. [9] WANG X Q, JIN X L, KOU D Z, et al. A parallel approach for the generation of unstructured meshes with billions of elements on distributed-memory supercomputers[J]. International Journal of Parallel Programming, 2017, 45(3):680-710. [10] 徐权,冷珏琳,杨洋,等.面向复杂几何模型的并行四面体网格生成方法[J].计算力学学报, 2023, 40(1):140-145. XU Q, LENG J L, YANG Y, et al. A parallel generation method of tetrahedral mesh for complex geometric models[J]. Chinese Journal of Computational Mechanics, 2023, 40(1):140-145.(in Chinese) [11] TREMEL U, DEISTER F, HASSAN O, et al. Parallel generation of unstructured surface grids[J]. Engineering with Computers, 2005, 21(1):36-46. [12] LAUG P, GUIBAULT F, BOROUCHAKI H. Automatic mesh generation of multiface models on multicore processors[J]. International Journal of Research in Medical Sciences, 2015, 3(3):808-809. [13] LAUG P, GUIBAULT F, BOROUCHAKI H. Parallel meshing of surfaces represented by collections of connected regions[J]. Advances in Engineering Software, 2017, 103:13-20. [14] ZHAO D W, CHEN J J, ZHENG Y, et al. Fine-grained parallel algorithm for unstructured surface mesh generation[J]. Computers&Structures, 2015, 154:177-191. [15] YU F, CAO J, SHAN J L, et al. PASM:parallel aligned surface meshing[J]. International Journal for Numerical Methods in Engineering, 2021, 122(15):3705-3732. [16] FORUM M P. MPI:a message-passing interface standard[D]. Knoxville, USA:University of Tennessee, 1994. [17] DAGUM L, MENON R. OpenMP:an industry-standard API for shared-memory programming[J]. IEEE Computational Science&Engineering, 1998, 5(1):46-55. [18] 郑澎,冷珏琳,徐权,等.面向高性能数值模拟的并行网格生成软件研制[J].空气动力学学报, 2022, 40(5):134-145. ZHENG P, LENG J L, XU Q, et al. Development of a parallel mesh generation software for high-performance numerical simualtions[J]. Acta Aerodynamica Sinica, 2022, 40(5):134-145.(in Chinese) [19] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN:a parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4(4):480-488. [20] LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN:a programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1(1):35-48. [21] ZHANG B Y, MO Z Y, WANG X, et al. JCOGIN:a programming framework for particle transport on combinatorial geometry[J]. The Journal of Supercomputing, 2021, 77(10):11270-11287. [22] 王小毛,徐麟祥,廖仁强.三峡工程大坝设计[J].中国工程科学, 2011, 13(7):70-77. WANG X M, XU L X, LIAO R Q. The dam design of Three Gorges Project[J]. Engineering Sciences, 2011, 13(7):70-77.(in Chinese) [23] KARYPIS G, KUMAR V. METIS:a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 5.1.0[D]. Minneapolis, USA:Department of Computer Science and Engineering University of Minnesota, 2013:26-30. [24] BOMAN E G, ÇATALYVREK V V, CHEVALIER C, et al. The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing:partitioning, ordering and coloring[J]. Scientific Programming, 2012, 20(2):129-150. [25] QUADROS W R, SHIMADA K, OWEN S J. 3D discrete skeleton generation by wave propagation on PR-octree for finite element mesh sizing[C]//Proceedings of ACM Symposium on Solid Modeling and Applications. New York, USA:ACM Press, 2004:327-332. |