[1] SIVARANJANI A, SENTHILRANI S, ASHOKUMAR B, et al. An improvised algorithm for computer vision based cashew grading system using deep CNN[C]//Proceedings of 2018 IEEE International Conference on System, Computation, Automation and Networking. Washington D. C., USA:IEEE Press, 2018:1-5. [2] 崔丽群,曹华维.基于改进YOLOv5的遥感图像目标检测[J].计算机工程, 2024, 50(4):228-236. CUI L Q, CAO H W. Target detection of remote-sensing images based on improved YOLOv5[J]. Computer Engineering, 2024, 50(4):228-236.(in Chinese) [3] 陈露萌,曹彦彦,黄民,等.基于改进YOLOv5的火焰检测方法[J].计算机工程, 2023, 49(8):291-301, 309. CHEN L M, CAO Y Y, HUANG M, et al. Flame detection method based on improved YOLOv5[J]. Computer Engineering, 2023, 49(8):291-301, 309.(in Chinese) [4] SRIKANTH S, SUBRAMANIAN L, SUBRAMONEY S, et al. Tackling memory access latency through DRAM row management[C]//Proceedings of International Symposium on Memory Systems. New York, USA:ACM Press, 2018:137-147. [5] ÖZKILBAC B, OZBEK I Y, KARACALI T. Real-time fixed-point hardware accelerator of convolutional neural network on FPGA based[C]//Proceedings of the 5th International Conference on Computing and Informatics. Washington D. C., USA:IEEE Press, 2022:1-5. [6] JIA H Y, VALAVI H, TANG Y Q, et al. A programmable heterogeneous microprocessor based on bit-scalable in-memory computing[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9):2609-2621. [7] YOO T, KIM H, CHEN Q, et al. A logic compatible 4T dual embedded DRAM array for in-memory computation of deep neural networks[C]//Proceedings of 2019 IEEE/ACM International Symposium on Low Power Electronics and Design. Washington D. C., USA:IEEE Press, 2019:1-6. [8] ZHU Z H, SUN H B, LIN Y J, et al. A configurable multi-precision CNN computing framework based on single bit RRAM[C]//Proceedings of the 56th Annual Design Automation Conference. New York, USA:ACM Press, 2019:1-6. [9] BONG K, CHOI S, KIM C, et al. A low-power convolutional neural network face recognition processor and a CIS integrated with always-on face detector[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1):115-123. [10] KIM J H, KIM C, KIM K, et al. An ultra-low-power analog-digital hybrid CNN face recognition processor integrated with a CIS for always-on mobile devices[C]//Proceedings of IEEE International Symposium on Circuits and Systems. Washington D. C., USA:IEEE Press, 2019:1-5. [11] JIA H Y, OZATAY M, TANG Y Q, et al. Scalable and programmable neural network inference accelerator based on in-memory computing[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1):198-211. [12] LIU Y, WANG Z X, HE W, et al. An 82 nW 0.53 pJ/SOP clock-free spiking neural network with 40μs latency for AloT wake-up functions using ultimate-event-driven bionic architecture and computing-in-memory technique[C]//Proceedings of IEEE International Solid-State Circuits Conference. San Francisco, USA:IEEE Press, 2022:372-374. [13] SUNIL S, BRUCE F, MATTHEW Z, et al. A scalable multi-TeraOPS core for AI training and inference[J]. IEEE Solid-State Circuits Letters, 2018, 1(12):217-220. [14] SELVAKUMAR G, SATHISH K N, ASIRVATHAM M, et al. Performance evaluation of auxiliary threshold low power 6T SRAM cell[C]//Proceedings of the 6th International Conference on Trends in Electronics and Informatics. Washington D. C., USA:IEEE Press, 2022:140-144. [15] AGARWAL A, PATNI K, RAJESWARI D. Lung cancer detection and classification based on AlexNet CNN[C]//Proceedings of the 6th International Conference on Communication and Electronics Systems. Washington D. C., USA:IEEE Press, 2021:1390-1397. [16] TAO Y. Image style transfer based on VGG neural network model[C]//Proceedings of IEEE International Conference on Advances in Electrical Engineering and Computer Applications. Washington D. C., USA:IEEE Press, 2022:1475-1482. [17] CHI X, HUANG S, LI J. Handwriting recognition based on ResNet-18[C]//Proceedings of the 2nd International Conference on Big Data&Artificial Intelligence&Software Engineering. Washington D. C., USA:IEEE Press, 2021:456-459. [18] GOETSCHALCKX K, VERHELST M. Breaking high-resolution CNN bandwidth barriers with enhanced depth-first execution[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2):323-331. [19] THAKKAR V, TEWARY S, CHAKRABORTY C. Batch normalization in convolutional neural networks:a comparative study with CIFAR-10 data[C]//Proceedings of the 5th International Conference on Emerging Applications of Information Technology. Washington D. C., USA:IEEE Press, 2018:1-5. [20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE Press, 2016:770-778. [21] 石永泉,景乃锋.基于FPGA模拟的阻变神经网络加速器评估方法[J].计算机工程, 2021, 47(12):209-214. SHI Y Q, JING N F. Evaluation method based on FPGA emulation for resistive neural network accelerators[J]. Computer Engineering, 2021, 47(12):209-214.(in Chinese) [22] KIM J, LEE K, PARK J. A charge domain P-8T SRAM compute-in-memory with low-cost DAC/ADC operation for 4-bit input processing[C]//Proceedings of ACM/IEEE International Symposium on Low Power Electronics and Design. New York, USA:ACM Press, 2022:1-6. [23] ZHANG H, LIU J Z, WANG K, et al. A 40nm 33.6Tops/W 8T-SRAM computing-in-memory macro with DAC-less spike-pulse-truncation input and ADC-less charge-reservoir-integrate-counter output[C]//Proceedings of IEEE International Conference on Integrated Circuits, Technologies and Applications. Washington D. C., USA:IEEE Press, 2021:123-124. [24] YOO T, KIM T T, KIM B, et al. Design of current-mode 8T SRAM compute-In-memory macro for processing neural networks[C]//Proceedings of 2020 International SoC Design Conference. Washington D. C., USA:IEEE Press, 2020:175-176. [25] WANG X, LIU X, HU X, et al. TAC-RAM:A 65 nm 4 Kb SRAM computing-in-memory design with 57.55 TOPS/W supporting multibit matrix-vector multiplication for binarized neural network[C]//Proceedings of the 4th IEEE International Conference on Artificial Intelligence Circuits and Systems. Washington D. C., USA:IEEE Press,2022:66-69. |