1 |
邬江兴, 祁晓峰, 高彦钊. 异构计算并行编程模型综述. 上海航天(中英文), 2021, 38 (4): 1- 11.
|
|
WU J X , QI X F , GAO Y Z . Review of programming models for heterogeneous parallel computing. Aerospace Shanghai (Chinese & English), 2021, 38 (4): 1- 11.
|
2 |
马可. 面向国产DCU的量子傅里叶变换算法并行化研究[D]. 郑州: 郑州大学, 2022.
|
|
MA K. Research on parallelization of quantum Fourier transform algorithm for domestic DCU[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese)
|
3 |
PESKIN C S . Numerical analysis of blood flow in the heart. Journal of Computational Physics, 1977, 25 (3): 220- 252.
|
4 |
HUA M J , PESKIN C S . An analysis of the numerical stability of the immersed boundary method. Journal of Computational Physics, 2022, 467, 111435.
|
5 |
KUO F A, WANG S T, CHOU C Y, et al. Parallelization of direct-forcing immersed boundary method using OpenACC[C]//Proceedings of the 7th International Symposium on Computing and Networking Workshops (CANDARW). Washington D.C., USA: IEEE Press, 2019: 176-179.
|
6 |
XIN J J , CHEN Z L , SHI F L , et al. An efficient large-deformation fluid-structure interaction model for flow induced oscillation of an elastic thin structure. Ocean Engineering, 2023, 278, 114348.
|
7 |
AMES J , PULERI D F , BALOGH P , et al. Multi-GPU immersed boundary method hemodynamics simulations. Journal of Computational Science, 2020, 44, 101153.
|
8 |
黄斌, 柳安军, 潘景山, 等. 基于GPU的LBM迁移模块算法优化. 计算机工程, 2024, 50 (2): 232- 238.
doi: 10.3969/j.issn.1007-130X.2024.02.006
|
|
HUANG B , LIU A J , PAN J S , et al. GPU-based algorithm optimization for streaming module of lattice Boltzmann method. Computer Engineering, 2024, 50 (2): 232- 238.
doi: 10.3969/j.issn.1007-130X.2024.02.006
|
9 |
丁越, 徐传福, 邱昊中, 等. 基于SYCL的多相流LBM模拟跨平台异构并行计算研究. 计算机科学, 2023, 50 (11): 32- 40.
doi: 10.11896/jsjkx.230300123
|
|
DING Y , XU C F , QIU H Z , et al. Study on cross-platform heterogeneous parallel computing for lattice Boltzmann multi-phase flow simulations based on SYCL. Computer Science, 2023, 50 (11): 32- 40.
doi: 10.11896/jsjkx.230300123
|
10 |
杨周凡, 韩林, 李冰洋, 等. 基于"嵩山"超级计算机系统的大规模管网仿真. 计算机工程, 2022, 48 (9): 155- 161.
doi: 10.19678/j.issn.1000-3428.0063418
|
|
YANG Z F , HAN L , LI B Y , et al. Large-scale pipeline network simulation based on "Songshan" supercomputer system. Computer Engineering, 2022, 48 (9): 155- 161.
doi: 10.19678/j.issn.1000-3428.0063418
|
11 |
ZHOU Q W , LI J N , ZHAO R C , et al. Compilation optimization of DCU-oriented OpenMP thread scheduling. Journal of Physics: Conference Series, 2023, 2558 (1): 012003.
|
12 |
陆金甫, 关治. 偏微分方程数值解法. 3版 北京: 清华大学出版社, 2016.
|
|
LU J F , GUAN Z . Numerical solution of partial differential equation. 3rd ed Beijing: Tsinghua University Press, 2016.
|
13 |
LIU X D , OSHER S , CHAN T . Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115 (1): 200- 212.
|
14 |
JIANG G S , SHU C W . Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126 (1): 202- 228.
|
15 |
NOOR D Z , CHERN M J , HORNG T L . An immersed boundary method to solve fluid-solid interaction problems. Computational Mechanics, 2009, 44 (4): 447- 453.
|
16 |
MARIANO F P , DE QUEIROZ MOREIRA L , NASCIMENTO A A , et al. An improved immersed boundary method by coupling of the multi-direct forcing and Fourier pseudo-spectral methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44 (9): 388.
|
17 |
黄泽浩. 针对沉水植被水流的浸没边界—格子玻尔兹曼GPU并行算法[D]. 武汉: 武汉大学, 2021.
|
|
HUANG Z H. Parallel algorithm of submerged boundary-lattice Boltzmann GPU for submerged vegetation flow[D]. Wuhan: Wuhan University, 2021. (in Chinese)
|
18 |
HUA H B , SHIN J , KIM J . Level set, phase-field, and immersed boundary methods for two-phase fluid flows. Journal of Fluids Engineering, 2014, 136 (2): 021301.
|
19 |
WANG Z L , FAN J R , LUO K . Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. International Journal of Multiphase Flow, 2008, 34 (3): 283- 302.
|
20 |
SMIT J , VAN SINT ANNALAND M , KUIPERS J A M . Grid adaptation with WENO schemes for non-uniform grids to solve convection-dominated partial differential equations. Chemical Engineering Science, 2005, 60 (10): 2609- 2619.
|
21 |
AL-MAHDAWI H K , SIDIKOVA A I , ALKATTAN H , et al. Parallel multigrid method for solving inverse problems. MethodsX, 2022, 9, 101887.
|
22 |
PETER S , DE A K . A parallel implementation of the ghost-cell immersed boundary method with application to stationary and moving boundary problems. Sādhanā, 2016, 41 (4): 441- 450.
|
23 |
JOHNSON T A , PATEL V C . Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics, 2000, 378, 19- 70.
|
24 |
YANG Y C , BALACHANDAR S . A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements. The Journal of Supercomputing, 2021, 77 (3): 2897- 2927.
|
25 |
BAGCHI P , BALACHANDAR S . Steady planar straining flow past a rigid sphere at moderate Reynolds number. Journal of Fluid Mechanics, 2002, 466, 365- 407.
|
26 |
黄山. 格子Boltzmann方法模拟圆球绕流的并行实现. 中国水运(下半月), 2013, 13 (7): 212- 213.
|
|
HUANG S . The lattice Boltzmann method simulates a parallel implementation of the flow around a sphere. China Water Transport, 2013, 13 (7): 212- 213.
|
27 |
任安禄, 李广望, 邹建峰. 中等雷诺数圆球绕流的数值研究. 浙江大学学报(工学版), 2004, 38 (5): 124- 128.
|
|
REN A L , LI G W , ZOU J F . Numerical study of uniform flow over sphere at intermediate Reynolds numbers. Journal of Zhejiang University (Engineering Science), 2004, 38 (5): 124- 128.
|
28 |
崔祚. 身体/尾鳍游动鱼体复合波动模式及其推进性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
CUI Z. Study on compound wave mode and propulsion performance of body/caudal fin swimming fish[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
29 |
KERN S , KOUMOUTSAKOS P . Simulations of optimized anguilliform swimming. The Journal of Experimental Biology, 2006, 209 (24): 4841- 4857.
|
30 |
ZHANG D , ZHANG J D , HUANG W X . Physical models and vortex dynamics of swimming and flying: a review. Acta Mechanica, 2022, 233 (4): 1249- 1288.
|
31 |
AROTE A , BADE M , BANERJEE J . On coherent structures of spatially oscillating planar liquid jet developing in a quiescent atmosphere. Physics of Fluids, 2020, 32 (8): 082111.
|