1 |
ZHAO J H, NIE Y W, ZHANG H, et al. A UAV-aided vehicular integrated platooning network for heterogeneous resource management. IEEE Transactions on Green Communications and Networking, 2023, 7 (1): 512- 521.
doi: 10.1109/TGCN.2023.3234588
|
2 |
LIU J, WU Z H, FENG D L, et al. HeterPS: distributed deep learning with reinforcement learning based scheduling in heterogeneous environments. Future Generation Computer Systems, 2023, 148, 106- 117.
doi: 10.1016/j.future.2023.05.032
|
3 |
王其涵, 庞建民, 岳峰, 等. 面向申威架构的KNN并行算法实现与优化. 计算机工程, 2023, 49 (5): 286- 294.
doi: 10.19678/j.issn.1000-3428.0063954
|
|
WANG Q H, PANG J M, YUE F, et al. Implementation and optimization of parallel KNN algorithm for sunway architecture. Computer Engineering, 2023, 49 (5): 286- 294.
doi: 10.19678/j.issn.1000-3428.0063954
|
4 |
胡怡, 陈道琨, 杨超, 等. 国产SW26010-Pro处理器上3级BLAS函数众核并行优化. 软件学报, 2024, 35 (3): 1569- 1584.
URL
|
|
HU Y, CHEN D K, YANG C, et al. Many-core parallel optimization of level-3 BLAS function on domestic SW26010-pro processor. Journal of Software, 2024, 35 (3): 1569- 1584.
URL
|
5 |
刘芳芳, 王志军, 汪荃, 等. 国产异构系统上的HPCG并行算法及高效实现. 软件学报, 2021, 32 (8): 2341- 2351.
URL
|
|
LIU F F, WANG Z J, WANG Q, et al. Parallel algorithm and efficient implementation of HPCG on domestic heterogeneous systems. Journal of Software, 2021, 32 (8): 2341- 2351.
URL
|
6 |
VENTURI S, CASEY T. SVD perspectives for augmenting DeepONet flexibility and interpretability. Computer Methods in Applied Mechanics and Engineering, 2023, 403, 115718.
doi: 10.1016/j.cma.2022.115718
|
7 |
LEI Z P, WANG F Y, LI C Y. A denoising method of partial discharge signal based on improved SVD-VMD. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30 (5): 2107- 2116.
doi: 10.1109/TDEI.2023.3269725
|
8 |
BHATTI A, ISHII T, KANNO N, et al. Region-based SVD processing of high-frequency ultrafast ultrasound to visualize cutaneous vascular networks. Ultrasonics, 2023, 129, 106907.
doi: 10.1016/j.ultras.2022.106907
|
9 |
XIAO J M, PANG Y F, XUE Q, et al. W-cycle SVD: a multilevel algorithm for batched SVD on GPUs[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Washington D. C., USA: IEEE Press, 2022: 1-16.
|
10 |
GATES M, TOMOV S, DONGARRA J. Accelerating the SVD two stage bidiagonal reduction and divide and conquer using GPUs. Parallel Computing, 2018, 74, 3- 18.
doi: 10.1016/j.parco.2017.10.004
|
11 |
YU W J, GU Y, LI Y H. Efficient randomized algorithms for the fixed-precision low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications, 2018, 39 (3): 1339- 1359.
doi: 10.1137/17M1141977
|
12 |
DRMAČ Z, VESELIĆ K. New fast and accurate Jacobi SVD algorithm. Ⅰ. SIAM Journal on Matrix Analysis and Applications, 2008, 29 (4): 1322- 1342.
doi: 10.1137/050639193
|
13 |
DEMMEL J, KAHAN W. Accurate singular values of bidiagonal matrices. SIAM Journal on Scientific and Statistical Computing, 1990, 11 (5): 873- 912.
doi: 10.1137/0911052
|
14 |
GU M, EISENSTAT S C. A divide-and-conquer algorithm for the bidiagonal SVD. SIAM Journal on Matrix Analysis and Applications, 1995, 16 (1): 79- 92.
doi: 10.1137/S0895479892242232
|
15 |
MARQUES O, VASCONCELOS P B. Computing the bidiagonal SVD through an associated tridiagonal eigenproblem[C]//Proceedings of International Conference on Vector and Parallel Processing. Berlin, Germany: Springer, 2017: 64-74.
|
16 |
HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011, 53 (2): 217- 288.
doi: 10.1137/090771806
|
17 |
DRMAČ Z. Algorithm 977. ACM Transactions on Mathematical Software, 2018, 44 (1): 1- 30.
|
18 |
NAKATSUKASA Y, BAI Z J, GYGI F. Optimizing halley's iteration for computing the matrix polar decomposition. SIAM Journal on Matrix Analysis and Applications, 2010, 31 (5): 2700- 2720.
doi: 10.1137/090774999
|
19 |
DONGARRA J J, SORENSEN D C, HAMMARLING S J. Block reduction of matrices to condensed forms for eigenvalue computations. Journal of Computational and Applied Mathematics, 1989, 27 (1/2): 215- 227.
|
20 |
LTAIEF H, LUSZCZEK P, DONGARRA J. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures. ACM Transactions on Mathematical Software, 2013, 39 (3): 1- 22.
|
21 |
DONGARRA J, GATES M, HAIDAR A, et al. The singular value decomposition: anatomy of optimizing an algorithm for extreme scale. SIAM Review, 2018, 60 (4): 808- 865.
doi: 10.1137/17M1117732
|
22 |
SUKKARI D, LTAIEF H, KEYES D. A high performance QDWH-SVD solver using hardware accelerators. ACM Transactions on Mathematical Software, 2017, 43 (1): 1- 25.
|
23 |
ACOSTA-QUIÑONEZ R I, TORRES-ROMAN D, RODRIGUEZ-AVILA R. HOSVD prototype based on modular SW libraries running on a high-performance CPU+GPU platform. Journal of Systems Architecture, 2021, 113, 101897.
doi: 10.1016/j.sysarc.2020.101897
|
24 |
KRAINIUK M, GOLI M, PASCUZZI V R. OneAPI Open-Source math library interface[C]//Proceedings of the International Workshop on Performance, Portability and Productivity in HPC (P3HPC). Washington D. C., USA: IEEE Press, 2021: 22-32.
|
25 |
AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311- 4322.
doi: 10.1109/TSP.2006.881199
|
26 |
LI J M, WANG Z L, LI Q, et al. An enhanced K-SVD denoising algorithm based on adaptive soft-threshold shrinkage for fault detection of wind turbine rolling bearing. ISA Transactions, 2023, 142, 454- 464.
doi: 10.1016/j.isatra.2023.07.042
|