| 1 |
MIAO Z Y , MARGETTS L , VASILEIOU A N , et al. Surrogate model development using simulation data to predict weld residual stress: a case study based on the NeT-TG1 benchmark. International Journal of Pressure Vessels and Piping, 2023, 206, 105014.
doi: 10.1016/j.ijpvp.2023.105014
|
| 2 |
DENG D A , MURAKAWA H . Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects. Computational Materials Science, 2006, 37 (3): 209- 219.
doi: 10.1016/j.commatsci.2005.06.010
|
| 3 |
WU C B , WANG C , KIM J W . Bending deformation prediction in a welded square thin-walled aluminum alloy tube structure using an artificial neural network. The International Journal of Advanced Manufacturing Technology, 2021, 117 (9): 2791- 2805.
|
| 4 |
冀伟, 张鹏. 波形钢腹板梁T形接头焊接仿真分析与试验研究. 哈尔滨工程大学学报, 2024, 45 (4): 691- 698.
|
|
JI W , ZHANG P . Simulation analysis and experimental research on T-joint welding of corrugated steel web girders. Journal of Harbin Engineering University, 2024, 45 (4): 691- 698.
|
| 5 |
XU G X , PAN H C , LIU P , et al. Finite element analysis of residual stress in hybrid laser-arc welding for butt joint of 12 mm-thick steel plate. Welding in the World, 2018, 62 (2): 289- 300.
doi: 10.1007/s40194-017-0545-7
|
| 6 |
LIANG W , DENG D A . Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel. Advances in Engineering Software, 2018, 115, 439- 451.
doi: 10.1016/j.advengsoft.2017.11.002
|
| 7 |
DENG D A , MURAKAWA H . Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Computational Materials Science, 2008, 43 (2): 353- 365.
doi: 10.1016/j.commatsci.2007.12.006
|
| 8 |
卓文波, 谭国笔, 陈秋任, 等. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化. 焊接学报, 2024, 45 (4): 20-25, 130.
|
|
ZHUO W B , TAN G B , CHEN Q R , et al. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ. Transactions of the China Welding Institution, 2024, 45 (4): 20-25, 130.
|
| 9 |
张营营, 徐浩, 陈培见, 等. 基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测方法. 土木与环境工程学报, 2024, 46 (1): 182- 193.
|
|
ZHANG Y Y , XU H , CHEN P J , et al. Machine learning method for overall stability of welded constant section box columns made of high strength steel. Journal of Civil and Environmental Engineering, 2024, 46 (1): 182- 193.
|
| 10 |
TIAN L , LUO Y . A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm. Journal of Intelligent Manufacturing, 2020, 31 (3): 575- 596.
doi: 10.1007/s10845-019-01469-w
|
| 11 |
卫钰汶, 仲强, 王德禹. 基于BP神经网络的I型金属夹芯板极限强度预测. 中国舰船研究, 2022, 17 (2): 125- 134.
|
|
WEI Y W , ZHONG Q , WANG D Y . Ultimate strength prediction of I-core sandwich plate based on BP neural network. Chinese Journal of Ship Research, 2022, 17 (2): 125- 134.
|
| 12 |
LIU X Y , QIN J , ZHAO K , et al. Design optimization of laminated composite structures using artificial neural network and genetic algorithm. Composite Structures, 2023, 305, 116500.
doi: 10.1016/j.compstruct.2022.116500
|
| 13 |
MATLOOB F , GHAZAL T M , TALEB N , et al. Software defect prediction using ensemble learning: a systematic literature review. IEEE Access, 2021, 9, 98754- 98771.
doi: 10.1109/ACCESS.2021.3095559
|
| 14 |
单永航, 张希, 胡川, 等. 基于集成学习的交通事故严重程度预测研究与应用. 计算机工程, 2024, 50 (2): 33- 42.
doi: 10.19678/j.issn.1000-3428.0067241
|
|
SHAN Y H , ZHANG X , HU C , et al. Traffic accident severity prediction research and application based on ensemble learning. Computer Engineering, 2024, 50 (2): 33- 42.
doi: 10.19678/j.issn.1000-3428.0067241
|
| 15 |
CUI S Z , YIN Y Q , WANG D J , et al. A stacking-based ensemble learning method for earthquake casualty prediction. Applied Soft Computing, 2021, 101, 107038.
doi: 10.1016/j.asoc.2020.107038
|
| 16 |
祝玉珊, 王晓玲, 崔博, 等. 坝基灌浆量预测ISSA-Stacking集成学习代理模型研究. 天津大学学报(自然科学与工程技术版), 2024, 57 (2): 174- 185.
|
|
ZHU Y S , WANG X L , CUI B , et al. Research on ISSA-Stacking integrated learning agent model for dam foundation grouting volume prediction. Journal of Tianjin University(Natural Science and Engineering Technology), 2024, 57 (2): 174- 185.
|
| 17 |
MARTÍN J , SÁEZ J A , CORCHADO E . On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction. Applied Soft Computing, 2021, 108, 107509.
doi: 10.1016/j.asoc.2021.107509
|
| 18 |
孙扬威, 戚湧. 基于聚类混合采样与PSO-Stacking的车载CAN入侵检测方法. 计算机工程, 2023, 49 (1): 138- 145.
doi: 10.19678/j.issn.1000-3428.0064949
|
|
SUN Y W , QI Y . Intrusion detection method for in-vehicle CAN based on cluster mixed sampling and PSO-Stacking. Computer Engineering, 2023, 49 (1): 138- 145.
doi: 10.19678/j.issn.1000-3428.0064949
|
| 19 |
KARDANI N , ZHOU A N , NAZEM M , et al. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13 (1): 188- 201.
doi: 10.1016/j.jrmge.2020.05.011
|
| 20 |
JIA H M , RAO H H , WEN C S , et al. Crayfish optimization algorithm. Artificial Intelligence Review, 2023, 56 (2): 1919- 1979.
|
| 21 |
ZHANG Q Q , LI Z , ZHU L , et al. Real-time prediction of river chloride concentration using ensemble learning. Environmental Pollution, 2021, 291, 118116.
doi: 10.1016/j.envpol.2021.118116
|
| 22 |
DONG Z X , LIU J Y , LIU B , et al. Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification. Energy and Buildings, 2021, 241, 110929.
doi: 10.1016/j.enbuild.2021.110929
|
| 23 |
RIBEIRO M H D M , DOS SANTOS COELHO L . Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied Soft Computing, 2020, 86, 105837.
doi: 10.1016/j.asoc.2019.105837
|
| 24 |
韩腾飞, 李亚平. 基于Stacking集成学习的剩余使用寿命预测. 计算机集成制造系统, 2024, 30 (7): 2464- 2473.
|
|
HAN T F , LI Y P . Remaining useful life prediction based on stacking ensemble learning. Computer Integrated Manufacturing Systems, 2024, 30 (7): 2464- 2473.
|
| 25 |
周钢, 瞿洋, 张社国. 集成学习在多源信息融合识别中的应用研究. 兵器装备工程学报, 2021, 42 (9): 166-169, 254.
|
|
ZHOU G , QU Y , ZHANG S G . Application of ensemble learning in multi-source information fusion and target identification. Journal of Ordnance Equipment Engineering, 2021, 42 (9): 166-169, 254.
|
| 26 |
ALSHBOUL O , ALMASABHA G , SHEHADEH A , et al. A comparative study of LightGBM, XGBoost, and GEP models in shear strength management of SFRC-SBWS. Structures, 2024, 61, 106009.
doi: 10.1016/j.istruc.2024.106009
|
| 27 |
LI N , WU Y H , WANG Q Z , et al. Underground mine truck travel time prediction based on stacking integrated learning. Engineering Applications of Artificial Intelligence, 2023, 120, 105873.
doi: 10.1016/j.engappai.2023.105873
|
| 28 |
马帅印, 李敏, 殷磊, 等. 基于特征加权集成学习的陶瓷制造能效预测方法研究. 计算机集成制造系统, 2023, 29 (3): 98- 109.
|
|
MA S Y , LI M , YIN L , et al. Research on energy efficiency prediction method of ceramic manufacturing based on feature weighted ensemble learning. Computer Integrated Manufacturing System, 2023, 29 (3): 98- 109.
|
| 29 |
CHEN S L , ZHENG J G . Sand cat arithmetic optimization algorithm for global optimization engineering design problems open access. Journal of Computational Design and Engineering, 2023, 10 (6): 2122- 2146.
doi: 10.1093/jcde/qwad094
|
| 30 |
WANG Y , RAN S J , WANG G G . Role-oriented binary grey wolf optimizer using foraging-following and Lévy flight for feature selection. Applied Mathematical Modelling, 2024, 126, 310- 326.
doi: 10.1016/j.apm.2023.08.043
|
| 31 |
LI Z . A local opposition-learning golden-sine grey wolf optimization algorithm for feature selection in data classification. Applied Soft Computing, 2023, 142, 110319.
doi: 10.1016/j.asoc.2023.110319
|
| 32 |
DAI P Y , KYAW P M , OSAWA N , et al. Numerical study on local residual stresses induced by high frequency mechanical impact post-weld treatment using the optimized displacement-controlled simulation method. Journal of Manufacturing Processes, 2023, 92, 262- 271.
doi: 10.1016/j.jmapro.2023.03.002
|
| 33 |
LEE C H , CHANG K H , VAN DO V N . Finite element modeling of residual stress relaxation in steel butt welds under cyclic loading. Engineering Structures, 2015, 103, 63- 71.
doi: 10.1016/j.engstruct.2015.09.001
|
| 34 |
KUMAR R , MAHAPATRA M M , PRADHAN A K , et al. Experimental and numerical study on the distribution of temperature field and residual stress in a multi-pass welded tube joint of Inconel 617 alloy. International Journal of Pressure Vessels and Piping, 2023, 206, 105034.
doi: 10.1016/j.ijpvp.2023.105034
|
| 35 |
MIRJALILI S , LEWIS A . The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
| 36 |
WANG D S , TAN D P , LIU L . Particle swarm optimization algorithm: an overview. Soft Computing, 2018, 22 (2): 387- 408.
doi: 10.1007/s00500-016-2474-6
|
| 37 |
XUE J K , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science Control Engineering, 2020, 8 (1): 22- 34.
doi: 10.1080/21642583.2019.1708830
|
| 38 |
XUE J K , SHEN B . Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
doi: 10.1007/s11227-022-04959-6
|
| 39 |
TRIPATHY B K , REDDY MADDIKUNTA P K , PHAM Q V , et al. Harris hawk optimization: a survey on Variants and applications. Computational Intelligence and Neuroscience, 2022, 2022, 2218594.
|
| 40 |
MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007
|