[1] DEL VALLE Y, VENAYAGAMOORTHY G K.Particle swarm optimization:basic concepts, variants and applications in power systems[J].IEEE Transactions on Evolutionary Computation, 2008, 12(2):171-195. [2] 吕铭晟, 沈洪远, 李志高, 等.多变异策略差分进化算法的研究与应用[J].计算机工程, 2014, 40(12):146-150. LÜ M S, SHEN H Y, LI Z G, et al.Research and application of differential evolution algorithm under multiple mutation strategy[J].Computer Engineering, 2014, 40(12):146-150.(in Chinese) [3] SOLTANI S, MURCH R D.A compact planar printed MIMO antenna design[J].IEEE Transactions on Antennas and Propagation, 2015, 63(3):1140-1149. [4] MILLIGAN T A.Modern antenna design[M].Hoboken, USA:John Wiley & Sons, Inc., 2005. [5] REGIS R G.Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J].IEEE Transactions on Evolutionary Computation, 2014, 18(3):326-347. [6] ONG Y S, NAIR P B, KEANE A J.Evolutionary optimization of computationally expensive problems via surrogate modeling[J].AIAA Journal, 2003, 41(4):687-696. [7] LIM D, JIN Y C, ONG Y S, et al.Generalizing surrogate-assisted evolutionary computation[J].IEEE Transactions on Evolutionary Computation, 2010, 14(3):329-355. [8] QUEIPO N V, HAFTKA R T, SHYY W, et al.Surrogate-based analysis and optimization[J].Progress in Aerospace Sciences, 2005, 41(1):1-28. [9] WORTMANN T, COSTA A, NANNICINI G, et al.Advantages of surrogate models for architectural design optimization[J].Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2015, 29(4):471-481. [10] TANG Y F, CHEN J Q, WEI J H.A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions[J].Engineering Optimization, 2013, 45(5):557-576. [11] SUN C L, JIN Y C, CHENG R, et al.Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J].IEEE Transactions on Evolutionary Computation, 2017, 21(4):644-660. [12] TIAN J, TAN Y, ZENG J C, et al.Multiobjective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J].IEEE Transactions on Evolutionary Computation, 2019, 23(3):459-472. [13] 张宗华, 赵京湘, 卢享, 等.基于遗传算法的BP神经网络在电力负载预测中的应用[J].计算机工程, 2017, 43(10):277-282, 288. ZHANG Z H, ZHAO J X, LU X, et al.Application of BP neural network based on genetic algorithm in power load forecasting[J].Computer Engineering, 2017, 43(10):277-282, 288.(in Chinese) [14] JIN Y C, OLHOFER M, SENDHOFF B.A framework for evolutionary optimization with approximate fitness functions[J].IEEE Transactions on Evolutionary Computation, 2002, 6(5):481-494. [15] JIN Y.A comprehensive survey of fitness approximation in evolutionary computation[J].Soft Computing, 2005, 9(1):3-12. [16] LIU B, ZHANG Q F, GIELEN G G E.A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J].IEEE Transactions on Evolutionary Computation, 2013, 18(2):180-192. [17] SCHNEIDER P I, SANTIAGO X G, ROCKSTUHL C, et al.Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes[EB/OL].[2020-12-15].http://arxiv.org/pdf/1707.08479. [18] YU H B, TAN Y, SUN C L, et al.A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization[J].Knowledge-Based Systems, 2019, 163:14-25. [19] SUN C L, ZENG J C, PAN J, et al.A new fitness estimation strategy for particle swarm optimization[J].Information Sciences, 2013, 221:355-370. [20] SUN C L, DING J L, ZENG J C, et al.A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems[J].Memetic Computing, 2018, 10(2):123-134. [21] WANG H D, JIN Y C, DOHERTY J.Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J].IEEE Transactions on Cybernetics, 2017, 47(9):2664-2677. [22] YU H B, TAN Y, ZENG J C, et al.Surrogate-assisted hierarchical particle swarm optimization[J].Information Sciences, 2018, 454/455:59-72. [23] LI F, CAI X, GAO L, et al.A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems[J].IEEE Transactions on Cybernetics, 2021, 51(3):1390-1402. [24] LIAO P, SUN C L, ZHANG G C, et al.Multi-surrogate multi-tasking optimization of expensive problems[EB/OL].[2020-12-15].https://www.researchgate.net/publication/343051439_Multi-surrogate_multi-tasking_optimization_of_expensive_problems. [25] ER M J, WU S Q, LU J W, et al.Face recognition with Radial Basis Function(RBF) neural networks[J].IEEE Transactions on Neural Networks, 2002, 13(3):697-710. [26] KATTAN A, GALVAN E.Evolving radial basis function networks via GP for estimating fitness values using surrogate models[C]//Proceedings of 2012 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2012:1-7. [27] GUTMANN H M.A radial basis function method for global optimization[J].Journal of Global Optimization, 2001, 19(3):201-227. [28] STORN R, PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997, 11(4):341-359. [29] 代瑞瑞, 马永杰, 摆玉龙, 等.基于动态模式搜索的差分进化算法[J].计算机工程, 2016, 42(9):163-167. DAI R R, MA Y J, BAI Y L, et al.Differential evolution algorithm based on dynamic pattern search[J].Computer Engineering, 2016, 42(9):163-167.(in Chinese) [30] ZHANG J Q, SANDERSON A C.JADE:adaptive differential evolution with optional external archive[J].IEEE Transactions on Evolutionary Computation, 2009, 13(5):945-958. [31] SUN C L, JIN Y C, ZENG J C, et al.A two-layer surrogate-assisted particle swarm optimization algorithm[J].Soft Computing, 2015, 19(6):1461-1475. [32] SUGANTHAN P N, HANSEN N, LIANG J J, et al.Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[EB/OL].[2020-12-15].http://www.al-roomi.org/multimedia/CEC_Database/CEC2013/RealParameterOptimization/CEC2013_RealParameterOptimization_TechnicalReport.pdf. [33] HENLEY S.Principles and procedure of statistics:a biometrical approach[J].Computers & Geosciences, 1983, 9(2):275. [34] WANG H D, JIN Y C, SUN C L, et al.Offline data-driven evolutionary optimization using selective surrogate ensembles[J].IEEE Transactions on Evolutionary Computation, 2019, 23(2):203-216. |