[1] JIA Y, BURDEN J, LAWTON T, et al. Safe reinforcement learning for sepsis treatment[C]//Proceedings of the IEEE International Conference on Healthcare Informatics. Washington D. C., USA: IEEE Press, 2020: 1-7. [2] ZAHER S R, ELGOHARY D A, ANTONIOS M A M. Comparison between early and late mortalities due to severe sepsis in a pediatric intensive care unit: five-years-experience[J]. Egyptian Pediatric Association Gazette, 2022, 70(1): 17. [3] SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. The Journal of the American Medical Association, 2016, 315(8): 801-810. [4] KOMOROWSKI M, CELI L A, BADAWI O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care[J]. Nature Medicine, 2018, 24(11): 1716-1720. [5] BUCZAK A L, BABIN S, MONIZ L. Data-driven approach for creating synthetic electronic medical records[J]. BMC Medical Informatics and Decision Making, 2010, 10: 59. [6] WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 588-598. [7] KUO N I, POLIZZOTTO M N, FINFER S, et al. The health gym: synthetic health-related datasets for the development of reinforcement learning algorithms[J]. Scientific Data, 2022, 9: 693. [8] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65. [9] ZHANG Z, YAN C, MESA D A, et al. Ensuring electronic medical record simulation through better training, modeling, and evaluation[J]. Journal of the American Medical Informatics Association, 2020, 27(1): 99-108. [10] THANH-TUNG H, TRAN T, VENKATESH S. Improving generalization and stability of generative adversarial networks[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1902.03984. [11] 宋航, 周凤, 熊伟. 基于自相关-变分对抗学习的物理系统异常检测[J]. 计算机工程, 2024, 50(12): 358-366. SONG H, ZHOU F, XIONG W. Anomaly detection of physical systems based on autocorrelation-variance adversarial learning[J]. Computer Engineering, 2024, 50(12): 358-366. (in Chinese) [12] CHALLEN R, DENNY J, PITT M, et al. Artificial intelligence, bias and clinical safety[J]. BMJ Quality Safety, 2019, 28(3): 231-237. [13] KUO N I, JORM L, BARBIERI S. Synthetic health-related longitudinal data with mixed-type variables generated using diffusion models[EB/OL].[2024-05-05]. https://arxiv.org/pdf/2303.12281. [14] SOHL-DICKSTEIN J, WEISS E, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2015: 2256-2265. [15] BEAULIEU-JONES B K, WU Z S, WILLIAMS C, et al. Privacy-preserving generative deep neural networks support clinical data sharing[J]. Cardiovascular Quality and Outcomes, 2019, 12(7): e005122. [16] CHOI E, BISWAL S, MALIN B, et al. Generating multi-label discrete patient records using generative adversarial networks[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1703.06490. [17] MACIAS-FASSIO E, MORALES A, PRUENZA C, et al. Privacy-preserving tabular data generation: application to sepsis detection[EB/OL].[2024-05-05]. https://arxiv.org/pdf/2404.16638. [18] KILLIAN T W, PARBHOO S, GHASSEMI M. Risk sensitive dead-end identification in safety-critical offline reinforcement learning[EB/OL].[2024-05-05]. https://arxiv.org/pdf/2301.05664. [19] BAOWALY M K, LIN C C, LIU C L, et al. Synthesizing electronic health records using improved generative adversarial networks[J]. Journal of the American Medical Informatics Association, 2019, 26(3): 228-241. [20] ESTEBAN C, HYLAND S L, RATSCH G. Real-valued (medical) time series generation with recurrent conditional GANs[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1706.02633. [21] 刘帅威, 李智, 王国美, 等. 基于Transformer和GAN的对抗样本生成算法[J]. 计算机工程, 2024, 50(2): 180-187. LIU S W, LI Z, WANG G M, et al. Adversarial sample generation algorithm based on Transformer and GAN[J]. Computer Engineering, 2024, 50(2): 180-187. (in Chinese) [22] DASH S, YALE A, GUYON I, et al. Medical time-series data generation using generative adversarial networks[M]. Berlin, Germany: Springer, 2020. [23] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2017: 214-223. [24] RASHIDIAN S, WANG F S, MOFFITT R, et al. SMOOTH-GAN: towards sharp and smooth synthetic EHR data generation[C]//Proceedings of the 18th International Conference on Artificial Intelligence in Medicine. Berlin, Germany: Springer, 2020: 37-48. [25] WEI X, GONG B Q, LIU Z X, et al. Improving the improved training of Wasserstein GANs: a consistency term and its dual effect[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1803.01541. [26] YAHI A, VANGURI R, ELHADAD N, et al. Generative adversarial networks for electronic health records: a framework for exploring and evaluating methods for predicting drug-induced laboratory test trajectoriest[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1712.00164. [27] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2017: 2642-2651. [28] RAGHU A, KOMOROWSKI M, CELI L, et al. Continuous state-space models for optimal sepsis treatment: a deep reinforcement learning approach[C]//Proceedings of the International Conference on Machine Learning for Healthcare. Washington D. C., USA: IEEE Press, 2017: 147-163. [29] HOANG Q, NGUYEN T D, LE T, et al. Multi-generator generative adversarial nets[EB/OL].[2024-05-05]. https://arxiv.org/pdf/1708. 02556. [30] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin, Germany: Springer, 2012. [31] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. [32] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2016: 29. [33] MUKAKA M M. A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal, 2012, 24(3): 69-71. [34] VILLANI C. Optimal transport: old and new[M]. Berlin, Germany: Springer, 2009. [35] CHEN Y Q, LIN Z H, MVLLER H G. Wasserstein regression[J]. Journal of the American Statistical Association, 2023, 118(542): 869-882. [36] JOHNSON A E, POLLARD T J, SHEN L, et al. MIMIC-III, a freely accessible critical care database[J]. Scientific Data, 2016, 3: 160035. [37] MUYAMA L, NEURAZ A, COULET A. Extracting diagnosis pathways from electronic health records using deep reinforcement learning[EB/OL].[2024-05-05]. https://arxiv.org/pdf/2305.06295. [38] TAI C Y, WANG W J, HUANG Y M. Using time-series generative adversarial networks to synthesize sensing data for pest incidence forecasting on sustainable agriculture[J]. Sustainability, 2023, 15(10): 7834. [39] GAO F, YANG Y, WANG J, et al. A deep convolutional generative adversarial networks-based semi-supervised method for object recognition in synthetic aperture radar images[J]. Remote Sensing, 2018, 10(6): 846. [40] LIU Y S, WIJEWICKREMA S, LI A, et al. Time-transformer: integrating local and global features for better time series generation[C]//Proceedings of the 2024 SIAM International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2024: 325-333. [41] SOLATORIO A V, DUPRIEZ O. REaLTabFormer: generating realistic relational and tabular data using transformers[EB/OL].[2024-05-05]. https://arxiv.org/pdf/2302.02041. |