作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (2): 356-371. doi: 10.19678/j.issn.1000-3428.0069967

• 大模型与生成式人工智能 • 上一篇    

基于顺序耦合对抗学习的脓毒症序列生成方法

张骐薇1, 林彬2,3, 刘云龙1   

  1. 1. 厦门大学航空航天学院, 福建 厦门 361005;
    2. 长兴县人民医院药学部, 浙江 长兴 313100;
    3. 浙江大学医学院附属第二医院长兴分院湖州市智能药学与个体化治疗重点实验室, 浙江 长兴 313100
  • 收稿日期:2024-06-06 修回日期:2024-08-11 发布日期:2026-02-04
  • 作者简介:张骐薇,女,硕士研究生,主研方向为人工智能、医疗决策;林彬,副主任药师、硕士;刘云龙(通信作者),副教授、博士生导师、博士。E-mail:ylliu@xmu.edu.cn
  • 基金资助:
    湖州市智能药学与个体化治疗重点实验室-长兴县抗癌协会联合开放基金(HZKE-20230201);国家自然科学基金(61772438)。

Sepsis Sequence Generation Method Based on Sequential Coupled Adversarial Learning

ZHANG Qiwei1, LIN Bin2,3, LIU Yunlong1   

  1. 1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian, China;
    2. Department of Pharmacy, Changxing People's Hospital, Changxing 313100, Zhejiang, China;
    3. Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Changxing 313100, Zhejiang, China
  • Received:2024-06-06 Revised:2024-08-11 Published:2026-02-04

摘要: 脓毒症是一种由感染导致的危重症,是重症监护室(ICU)中患者死亡的主要原因之一。然而,在脓毒症治疗环境中,实际数据较难获取,存在临床数据匮乏的问题。为克服这些挑战,提出一种具有梯度惩罚的顺序耦合医疗Wasserstein生成对抗网络(SC-med WGAN),与现有工作侧重单步生成不同,强调对脓毒症患者状态和药物剂量的顺序生成,以更好地模拟临床数据的生成过程。该模型由两个耦合生成器组成,在统一模型中协调患者状态和药物剂量的生成。模型采用混合损失技巧,引入特征匹配损失和皮尔逊相关系数作为附加项,既考虑单个变量的实际分布,也考虑变量之间随时间的相关性。在包含17 898位脓毒症患者信息的重症监护医疗信息标记(MIMIC-Ⅲ)数据集上测试,并在贫血数据上进行验证,证明模型的准确性和鲁棒性。实验结果表明,该模型顺序生成的数据在质量和真实性上优于其他模型,揭示了患者状态和药物剂量数据的生成具有明显的相互影响这一临床事实。

关键词: 脓毒症, 数据生成, 顺序生成, 序列耦合对抗学习, 耦合生成器

Abstract: Sepsis is a critical condition caused by infection and is a leading cause of death in Intensive Care Units (ICUs). However, in the context of sepsis treatment, actual clinical data are challenging to obtain. To address this challenge, a Sequentially Coupled medical Wasserstein Generative Adversarial Network (SC-med WGAN) with a gradient penalty is proposed in this study. In contrast to existing models that focus on single-step generation, this model emphasizes the sequential generation of sepsis patient statuses and drug doses to improve the simulation of the process of generating clinical data. The SC-med WGAN consists of two coupled generators that coordinate the generation of patient status and drug dose in a unified model. Moreover, the model employs a mixed-loss technique that introduces feature-matched loss and Pearson's correlation coefficient as additional terms to account for the actual distribution of individual variables and the correlation between variables over time. Finally, the model is tested on the Medical Information Mark for Intensive Care-III (MIMIC-III) dataset, which contains 17 898 sepsis patient records. Additionally, the model is validated using anemia data, further demonstrating its accuracy and robustness. The experimental results show that the data generated sequentially by the proposed model are superior to those generated by other models in terms of quality and authenticity. The proposed method reveals a significant interaction between the generation of patient status and drug dose data.

Key words: sepsis, data generation, sequential generation, sequentially coupled adversarial learning, coupled generator

中图分类号: