作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (10): 255-263. doi: 10.19678/j.issn.1000-3428.0066383

• 开发研究与工程应用 • 上一篇    下一篇

基于可分负载理论的多核密码处理器调度研究

郎俊豪, 李伟*, 陈韬, 南龙梅   

  1. 战略支援部队信息工程大学, 郑州 450000
  • 收稿日期:2022-11-28 出版日期:2023-10-15 发布日期:2023-02-08
  • 通讯作者: 李伟
  • 作者简介:

    郎俊豪(1997-), 男, 硕士研究生, 主研方向为智能化可重构芯片电路与架构

    陈韬, 副教授、博士

    南龙梅, 讲师、博士

  • 基金资助:
    国家自然科学基金(61404175); 国家科技重大专项(2018ZX01027101-004); 河南省科技攻关项目(202102210116)

Research on Scheduling for Multi-core Cryptoprocessors Based on Divisible Load Theory

Junhao LANG, Wei LI*, Tao CHEN, Longmei NAN   

  1. PLA Information Engineering University, Zhengzhou 450000, China
  • Received:2022-11-28 Online:2023-10-15 Published:2023-02-08
  • Contact: Wei LI

摘要:

针对多核密码处理器高能效负载调度问题,基于可分负载理论提出多轮与单轮混合负载调度机制,在不增加功耗前提下缩短密码任务完成时间,提升处理器能效。利用可分负载理论分析方法重点划分计算、负载传输时间,建立单轮调度、多轮与单轮混合调度方式,得到数学解析解以指导负载调度高能效设计,同时考虑计算通信占比、结果输出等因素以精确模型。分析模型并设计负载调度机制,在多核密码处理器芯片上实现并验证。MATLAB仿真结果表明,混合调度方式具有更好的性能表现,密码任务传输与计算时间比越大,负载完成时间的下限值越大,当处理器核数、调度轮数取中间值时,达到最优的负载完成时间和能效值,当结果输出时间小于任务传输时间时,影响较小。芯片实测结果表明,对于不同密码算法,提出的多轮与单轮混合调度方式能缩短10.1%~48.2%的负载任务完成时间,相应的多核密码处理器能效值提升9.8%~48.1%。

关键词: 密码处理器, 多核处理器, 可分负载理论, 负载调度, 高能效

Abstract:

Based on the divisible load theory, a mixed load scheduling mechanism with multi-round and single-round is proposed to solve the high energy-efficient load scheduling problem for multicore cryptoprocessors. This method can reduce the time taken to complete a cryptographic task without increasing the power consumption and can improve the energy-efficiency. First, the Divisible Load Theory(DLT) analysis is used to divide the computation and loads transfer time, and mathematical models have been constructed for single-round scheduling as well as multi- and single-round mixed scheduling. Mathematically, closed-form solutions are obtained to guide the design of high energy-efficiency for load scheduling. Moreover, the computing/communication ratio and resulting output are considered. After analyzing the model, a load scheduling mechanism is designed, which is implemented and validated on a multicore cryptographic processor chip. MATLAB simulations show that hybrid scheduling performs better. The larger the ratio of the transmission/computation time for cryptographic tasks, the higher the lower bound on the load completion time. The optimal load completion time and energy efficiency are achieved when the number of processor cores and scheduling rounds are taken as intermediate values. The effect is negligible when the output time is shorter than the task transmission time. The experimental results show that for different cipher algorithms, the proposed multi-and single-round mixed scheduling can shorten the completion time by 10.1 to 48.2 percent and increase the energy-efficiency of the corresponding multicore cryptographic processors by 9.8 to 48.1 percent.

Key words: cryptoprocessor, multi-core processor, Divisible Load Theory(DLT), load scheduling, high energy-efficiency