[1]BETHART S,MARTIN J H.Identification of event mentions and their semantic class[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Sydney,Australia:[s.n.],2006:146-154.
[2]LI P,ZHOU G,ZHU Q.Minimally supervised Chinese event extraction from multiple views[J].ACM Transactions on Asian and Low-resource Language Information Processing,2016,6(2):13.
[3]NGUYEN M T,NGUYEN T T.Extraction of disease events for a real-time monitoring system[C]//Proceedings of Symposium on Information and Communication Technology.Washington D.C.,USA:IEEE Press,2013:139-147.
[4]侯立斌,李培峰,朱巧明.基于CRFs和跨事件的事件识别研究[J].计算机工程,2012,38(24):191-195.
[5]TSOLMON B,LEE K S.An event extraction model based on timeline and user analysis in latent dirichlet allocation[M].New York,USA:ACM Press,2014.
[6]SILVA J D A,HRUSCHKA E R.A support system for clustering data streams with a variable number of clusters[J].ACM Transactions on Autonomous & Adaptive Systems,2016,11(2):11.
[7]LIN C X,ZHAO B,MEI Q.PET:a statistical model for popular events tracking in social communities[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2010:929-938.
[8]DIAO Q,JIANG J,ZHU F,et al.Finding bursty topics from microblogs[C]//Proceedings of Association for Computational Linguistics.[S.1.]:Association for Computational Linguistics,2012:536-544.
[9]KLEINBERG J.Bursty and hierarchical structure in streams[J].Data Mining & Knowledge Discovery,2003,7(4):373-397.
[10]LAPPAS T,ARAI B,PLATAKIS M,et al.On burstiness-aware search for document sequences[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2009:477-486.
[11]ALVES R A D S,ASSUNCAO R M,STANCIOLI V D M P O.Burstiness scale:a parsimonious model for characterizing random series of events[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2016:1405-1414.
[12]KALOGERATOS A,ZAGORISIOS P,LIKAS A.Improving text stream clustering using term burstiness and co-burstiness[C]//Proceedings of Hellenic Conference on Artificial Intelligence.Athens,Hellenic:[s.n.],2016:1-9.
[13]ZHAO L,CHEN F,LU C T,et al.Online spatial event forecasting in microblogs[J].ACM Transactions on Spatial Algorithms & Systems,2016,2(4):15.
[14]SCHUBERT E,WEILER M,KRIEGEL H P.SPOTHOT:scalable detection of geo-spatial events in large textual streams[C]//Proceedings of International Conference on Scientific & Statistical Database Management.Washington D.C.,USA:IEEE Press,2016:1-12.
[15]QUEZADA M,POBLETE B.Location-aware model for news events in social media[C]//Proceedings of International ACM SIGIR Conference.New York,USA:ACM Press,2015:935-938.
[16]LAPPAS T,VIEIRA M R,GUNOPULOS D,et al.On the spatiotemporal burstiness of terms[J].Proceedings of the VLDB Endowment,2012,5(9).
[17]TAMURA K,MATSUI T,KITAKAMI H,et al.Identifying local temporal burstiness using MACD histogram[C]//Proceedings of IEEE International Conference on Systems,Man,and Cybernetics.Washington D.C.,USA:IEEE Press,2015:2666-2671.
[18]DODDINGTON G,MITCHELL A,PRZYBOCKI M,et al.The automatic content extraction program-tasks,data,and evaluation[C]//Proceedings of LREC’04.Washington D.C.,USA:IEEE Press,2004:158-165.
[19]PUSTEJOVSKY J,HANKS P,SAURI R,et al.The timebank corpus[C]//Proceedings of Corpus Linguistics Conference.Washington D.C.,USA:IEEE Press,2003:215-222.
[20]LAFFERTY J D,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence Data[J].Machine Learning 2002,3(2):282-289.
[21]马雷雷,李宏伟,连世伟,等.地名知识辅助的中文地名消歧方法[J].地理与地理信息科学,2016,32(4):5-10.
[22]SILVA J A,FARIA E R,BARROS R C,et al.Data stream clustering:a survey[J].ACM Computing Surveys,2014,46(1):13.
[23]蔡偃武.面向大规模数据的在线新事件检测[D].上海:华东理工大学,2014.
[24]YIN J,WANG J.A text clustering algorithm using an online clustering scheme for initialization[C]//Proceedings of ACM SIGKDD International Conference.New York,USA:ACM Press,2016:1995-2004.
[25]PENNINGTON J,SOCHER R,MANNING C.Glove:global vectors for word representation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C.,USA:IEEE Press,2014:1532-1543.
[26]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2013-01-12].https://www.mendeley.com.
[27]FENG W,ZHANG C,ZHANG W,et al.STREAMCUBE:hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream[C]//Proceedings of IEEE International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2015:1561-1572.
[28]BLER D M,LAFFERTY J D.Dynamic topic models[C]//Proceedings of DBLP’06.Washington D.C.,USA:IEEE Press,2006:113-120. |