[1]WU J,CAI Z.Attribute weighting via differential evolution algorithm for attribute weighted Naive Bayes[J].Journal of Computational Information Systems,2011,7(5):1672-1679.
[2]ORHAN U,ADEM K,COMERT O.Least squares approach to locally weighted naive Bayes method[J].Journal of New Results in Science,2012(1):71-80.
(下转第39页)
(上接第32页)
[3]JIANG Liangxiao,CAI Zhihua,ZHANG H,et al.Naive Bayes text classifiers:a locally weighted learning approach[J].Journal of Experimental & Theoretical Artificial Intelligence,2013,25(2):273-286.
[4]HE Y L,WANG R,KWONG S,et al.Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis[J].Information Sciences,2014,259:252-268.
[5]TAHERI S,YEARWOOD J,MAMMABOV M,et al.Attribute weighted naive Bayes classifier using a local optimization[J].Neural Computing and Applications,2014,24(5):995-1002.
[6]王辉,黄自威,刘淑芬.新型加权粗糙朴素贝叶斯算法及其应用研究[J].计算机应用研究,2015,32(12):3668-3672.
[7]董立岩,隋鹏,孙鹏,等.基于半监督学习的朴素贝叶斯分类新算法[J].吉林大学学报(工学版),2016,46(3):884-889.
[8]李楚进,付泽正.对朴素贝叶斯分类器的改进[J].统计与决策,2016(21):9-11.
[9]刘月峰,苑江浩,张晓琳.改进NB算法在垃圾邮件过滤技术中的研究[J].微电子学与计算机,2017,34(4):115-120.
[10]杨雷,曹翠玲,孙建国,等.改进的朴素贝叶斯算法在垃圾邮件过滤中的研究[J].通信学报,2017,38(4):140-148.
[11]段宏湘,张秋余,张墨逸.基于归一化互信息的FCBF特征选择算法[J].华中科技大学学报(自然科学版),2017,45(1):52-56.
[12]徐峻岭,周毓明,陈林,等.基于互信息的无监督特征选择[J].计算机研究与发展,2012,49(2):372-382.
[13]刘海峰,姚泽清,苏展.基于词频的优化互信息文本特征选择方法[J].计算机工程,2014,40(7):179-182.
[14]HODUE N,BHATTACHARYYA D K,KALITA J K.MIFS-ND:a mutual information-based feature selection method[J].Expert Systems with Applications,2014,41(14):6371-6385.
[15]CHANDRASHEKAR G,SAHIN F.A survey on feature selection methods[J].Computers and Electrical Engineering,2014,40(1):16-28.
|