1 |
POUYANFAR S, SADIQ S, YAN Y L, et al. A survey on deep learning. ACM Computing Surveys, 2019, 51 (5): 1- 36.
|
2 |
KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[EB/OL]. [2023-01-02]. https://arxiv.org/abs/1610.02527.
|
3 |
YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19.
|
4 |
DIAO E M, DING J, TAROKH V. HeteroFL: computation and communication efficient federated learning for heterogeneous clients[EB/OL]. [2023-01-02]. https://arxiv.org/abs/2010.01264.
|
5 |
杨强, 刘洋, 程勇. 联邦学习. 北京: 电子工业出版社, 2020.
|
|
YANG Q, LIU Y, CHENG Y. Federated learning. Beijing: Publishing House of Electronics Industry, 2020.
|
6 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, USA: PMLR Press, 2017: 1273-1282.
|
7 |
|
8 |
DIAO E, DING J, TAROKH V. SemiFL: communication efficient semi-supervised federated learning with unlabeled clients[EB/OL]. [2023-01-02]. https://arxiv.org/abs/12106.01432.
|
9 |
MELIS L, SONG C Z, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]//Proceedings of IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2019: 691-706.
|
10 |
KULKARNI V, KULKARNI M, PANT A. Survey of personalization techniques for federated learning[C]//Proceedings of the 4th World Conference on Smart Trends in Systems, Security and Sustainability. Washington D. C., USA: IEEE Press, 2020: 794-797.
|
11 |
DINH C T, TRAN N H, NGUYEN T D. Personalized federated learning with Moreau envelopes[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 21394-21405.
|
12 |
FALLAH A, MOKHTARI A, OZDAGLAR A. Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Advances in Neural Information Processing Systems, 2020, 33, 3557- 3568.
|
13 |
KHODAK M, BALCAN M F F, TALWALKAR A S. Adaptive gradient-based meta-learning methods. Advances in Neural Information Processing Systems, 2019, 32, 5917- 5928.
|
14 |
|
15 |
|
16 |
|
17 |
LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2020, 2, 429- 450.
|
18 |
|
19 |
YAO X, SUN L F. Continual local training for better initialization of federated models[C]//Proceedings of 2020 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2020: 1736-1740.
|
20 |
|
21 |
HUI Z Z, CHEN D J, XU Z H. Federation learning optimization using distillation[C]//Proceedings of 2021 Asia-Pacific Conference on Communications Technology and Computer Science. Washington D. C., USA: IEEE Press, 2021: 25-28.
|
22 |
|
23 |
SATTLER F, MÜLLER K R, SAMEK W. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (8): 3710- 3722.
|
24 |
BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2020: 1-9.
|
25 |
WANG H, KAPLAN Z, NIU D, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]//Proceedings of 2020 IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2020: 1698-1707.
|
26 |
|
27 |
|
28 |
UDDIN M P, XIANG Y, LU X Q, et al. Mutual information driven federated learning. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (7): 1526- 1538.
|
29 |
CHEN N Y, LI Y L, LIU X J, et al. A mutual information based federated learning framework for edge computing networks. Computer Communications, 2021, 176, 23- 30.
doi: 10.1016/j.comcom.2021.05.013
|
30 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2017: 1126-1135.
|
31 |
|
32 |
DUAN M M, LIU D, JI X Y, et al. FedGroup: efficient clustered federated learning via decomposed data-driven measure[EB/OL]. [2023-01-02]. https://arxiv.org/abs/2010.06870.
|
33 |
CANG S, YU H N. Mutual information based input feature selection for classification problems. Decision Support Systems, 2012, 54 (1): 691- 698.
doi: 10.1016/j.dss.2012.08.014
|
34 |
王树芬, 张哲, 马士尧, 等. 一种鲁棒的半监督联邦学习系统. 计算机工程, 2022, 48 (6): 107-114, 123
URL
|
|
WANG S F, ZHANG Z, MA S Y, et al. A robust semi-supervised federated learning system. Computer Engineering, 2022, 48 (6): 107-114, 123
URL
|
35 |
LI Q B, HE B S, SONG D. Model-contrastive federated learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10708-10717.
|
36 |
KORNBLITH S, NOROUZI M, LEE H, et al. Similarity of neural network representations revisited[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2019: 3519-3529.
|