[1]CHERKASSKY V.The nature of statistical learning theory[J].Technometrics,2002,38(4):409.
[2]邓乃杨,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社,2009.
[3]DENG N,TIAN Y,ZHANG C.Support vector machines:optimization based theory,algorithms,and extensions[M].[S.l.]:Chapman and Hall/CRC,2012.
[4]李琦,李晓航,邢丽萍,等.基于lp-范数约束的LSSVR多核学习算法[J].控制与决策,2015,30(9):1603-1608.
[5]BRABANTER K D,BRABANTER J D,SUYKENS J A K,et al.Optimized fixed-size kernel models for large data sets[J].Computational Statistics and Data Analysis,2010,54(6):1484-1504.
[6]SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
[7]SUYKENS J A K,BRABANTER J D,LUKAS L,et al.Weighted least squares support vector machines:robust-ness and sparse approximation[J].Neurocomputing,2002,48(4):85-105.
[8]SUYKENS J A K,LUKAS L,VANDEWALLE J.Sparse approximation using least square vector machines[C]//Proceedings of 2000 IEEE International Symposium on Circuits and Systems.Washington D.C.,USA:IEEE Press,2000:757-760.
[9]SUYKENS J A K,LUKAS L,VANDEWALLE J.Sparse least squares support vector machine classifiers[C]//Proceedings of European Symposium on Artificial Neural Networks.Berlin,Germany:Springer,2000:37-42.
(下转第205页)
(上接第198页)
[10]KRUIF B J D,VRIES T J A D.Pruning error minimization in least squares support vector machines[J].IEEE Transactions on Neural Networks,2003,14(3):696-702.
[11]ZENG X,CHEN X W.SMO-based pruning methods for sparse least squares support vector machines[M].Washington D.C.,USA:IEEE Press,2005.
[12]LPEZ L J,BRABANTER K D,DORRONSORO J R,et al.Sparse LSSVMs with L0-norm minimization[C]//Proceedings of European Symposium on Artificial Neural Networks,Computational Intelligence and Machine Learing.Berlin,Germany:Springer,2011:189-194.
[13]KAIZHU H.Sparse learning for support vector classification[J].Pattern Recognition Letters,2010,31(13):1944-1951.
[14]QI L,LI X H,BA W.Sparse least squares support vector machine with L0-norm in primal space[C]//Proceedings of 2015 IEEE International Conference on Information and Automation.Washington D.C.,USA:IEEE Press,2015:2778-2783.
[15]杨晓伟,路节,张广全.一种高效的最小二乘支持向量机分类器剪枝算法[J].计算机研究与发展,2007,44(7):1128-1136.
[16]马跃峰,梁循,周小平.一种基于全局代表点的快速最小二乘支持向量机稀疏化算法[J].自动化学报,2017,43(1):132-141.
[17]周欣然,滕召胜,易钊.构造稀疏最小二乘支持向量机的快速剪枝算法[J].电机与控制学报,2009,13(4):626-630.
[18]CAUWENBERGHS G,POGGIO T.Incremental and decremental support vector machine learning[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2000:388-394.
[19]KEERTHI S S,SHEVADE S.SMO algorithm for least-squares SVM formulations[J].Neural Computation,2003,15(2):487-507.
[20]周志华.机器学习[M].北京:清华大学出版社,2016. |