[1] KOREN Y, BELL R, VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer, 2009, 42(8):30-37. [2] MNIH A, SALAKHUTDINOV R R.Probabilistic matrix factorization[EB/OL].[2021-04-05].https://papers.nips.cc/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf. [3] FOUSS F, FAULKNER S, KOLP M, et al.Web recom-mendation system based on a Markov-chain model[C]//Proceedings of International Conference on Enterprise Information Systems.New York, USA:ACM Press, 2005:56-63. [4] AHMED A A, SALIM N.Markov Chain Recommendation System(MCRS)[J].International Journal of Novel Research in Computer Science and Software Engineering, 2016, 3:11-26. [5] WANG S L, CHEN Y L, KUO A M H, et al.Design and evaluation of a cloud-based mobile health information recommendation system on wireless sensor networks[J].Computers & Electrical Engineering, 2016, 49:221-235. [6] BAO J, ZHENG Y, WILKIE D, et al.Recommendations in location-based social networks:a survey[J].GeoInformatica, 2015, 19(3):525-565. [7] 刘树栋, 孟祥武.基于位置的社会化网络推荐系统[J].计算机学报, 2015, 38(2):322-336. LIU S D, MENG X W.Recommender systems in location-based social networks[J].Chinese Journal of Computers, 2015, 38(2):322-336.(in Chinese) [8] 焦旭, 肖迎元, 郑文广, 等.基于位置的社会化网络推荐技术研究进展[J].计算机研究与发展, 2018, 55(10):2291-2306. JIAO X, XIAO Y Y, ZHENG W G, et al.Research progress of recommendation technology ins location-based social networks[J].Journal of Computer Research and Development, 2018, 55(10):2291-2306.(in Chinese) [9] TOBLER W R.A computer movie simulating urban growth in the detroit region[J].Economic Geography, 1970, 46(1):234-240. [10] GAO H, TANG J, HU X, et al.Exploring temporal effects for location recommendation on location-based social networks[C]//Proceedings of the 7th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2013:93-100. [11] ZHAO S, ZHAO T, YANG H, et al.STELLAR:spatial-temporal latent ranking for successive point-of-interest recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:12-23. [12] WANG H, SHEN H, OUYANG W, et al.Exploiting POI-specific geographical influence for point-of-interest recommendation[C]//Proceedings of the 27th International Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:3877-3883. [13] MIKOLOV T, SUTSKEVER I, CHEN K, et al.Distributed representations of words and phrases and their composi-tionality[EB/OL].[2021-04-05].https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf. [14] LIU X, LIU Y, LI X.Exploring the context of locations for personalized location recommendations[C]//Proceedings of International Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2016:1188-1194. [15] ZHAO S, ZHAO T, KING I, et al.Geo-teaser:Geo-temporal sequential embedding rank for point-of-interest recommen-dation[C]//Proceedings of the World Wide Web Conference Companion.New York, USA:ACM Press, 2017:153-162. [16] FENG S, CONG G, AN B, et al.POI2Vec:geographical latent representation for predicting future visitors[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2017:102-108. [17] YU F, CUI L, GUO W, et al.A category-aware deep model for successive POI recommendation on sparse check-in data[C]//Proceedings of the World Wide Web Conference.[S.l.]:AAAI Press, 2020:1264-1274. [18] LIU Q, WU S, WANG L, et al.Predicting the next location:a recurrent model with spatial and temporal contexts[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:194-200. [19] AL-MOLEGI A, JABREEL M, GHALEB B.STF-RNN:space time features-based recurrent neural network for predicting people next location[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2016:1-7. [20] CHEN Y C, THAIPISUTIKUL T, SHIH T K.A learning-based POI recommendation with spatiotemporal context awareness[J].IEEE Transactions on Cybernetics, 2020, 21:1-14. [21] YAO D, ZHANG C, HUANG J, et al.SERM:a recurrent model for next location prediction in semantic trajectories[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:2411-2414. [22] ZHAN G, XU J, HUANG Z, et al.A semantic sequential correlation based LSTM model for next POI recommendation[C]//Proceedings of the 20th IEEE International Conference on Mobile Data Management.Washington D.C., USA:IEEE Press, 2019:128-137. [23] WANG H, LI P, LIU Y, et al.Towards real-time demand-aware sequential POI recommendation[J].Information Sciences, 2020, 547:482-497. [24] LI R, SHEN Y, ZHU Y.Next point-of-interest recommen-dation with temporal and multi-level context attention[C]//Proceedings of 2018 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2018:1110-1115. [25] WU Y, LI K, ZHAO G, et al.Long-and short-term preference learning for next POI recommendation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:2301-2304. [26] FENG J, LI Y, ZHANG C, et al.DeepMove:predicting human mobility with attentional recurrent networks[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2018:1459-1468. [27] LIU T, LIAO J, WU Z, et al.A geographical-temporal awareness hierarchical attention network for next point-of-interest recommendation[C]//Proceedings of 2019 International Conference on Multimedia Retrieval.New York, USA:ACM Press, 2019:7-15. [28] MA C, ZHANG Y, WANG Q, et al.Point-of-interest recommendation:exploiting self-attentive autoencoders with neighbor-aware influence[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2018:697-706. [29] PINEDA F J.Generalization of back-propagation to recurrent neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 1987:602-611. [30] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [31] HUANG J, LING C X.Using AUC and accuracy in evaluating learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 17(3):299-310. [32] MCPHERSON M, SMITH-LOVIN L, COOK J M.Birds of a feather:homophily in social networks[J].Annual Review of Sociology, 2001, 27(1):415-444. [33] WANG S, WANG Y, TANG J, et al.What your images reveal:exploiting visual contents for point-of-interest recommendation[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2017:391-400. [34] ZHANG Z, ZOU C, DING R, et al.VCG:exploiting visual contents and geographical influence for point-of-interest recommendation[J].Neurocomputing, 2019, 357:53-65. [35] JIAO X, XIAO Y, ZHENG W, et al.R2SIGTP:a novel real-time recommendation system with integration of geography and temporal preference for next point-of-interest[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2019:3560-3563. [36] XING S, WANG Q, ZHAO X, et al.Content-aware point-of-interest recommendation based on convolutional neural network[J].Applied Intelligence, 2019, 49(3):858-871. [37] BARAL R, ZHU X L, IYENGAR S S, et al.Reel:review aware explanation of location recommendation[C]//Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization.New York, USA:ACM Press, 2018:23-32. [38] LI H, GE Y, HONG R, et al.Point-of-interest recommendations:learning potential check-ins from friends[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:975-984. [39] ZHANG S, CHENG H.Exploiting context graph attention for POI recommendation in location-based social networks[C]//Proceedings of International Conference on Database Systems for Advanced Applications.Berlin, Germany:Springer, 2018:83-99. [40] YANG C, BAI L, ZHANG C, et al.Bridging collaborative filtering and semi-supervised learning:a neural approach for POI recommendation[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2017:1245-1254. [41] FUKUSHIMA K, MIYAKE S.Neocognitron:a self-organizing neural network model for a mechanism of visual pattern recognition[M].Berlin, Germany:Springer, 1982. [42] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations.New York, USA:ACM Press, 2015:102-136. [43] YANG D, ZHANG D, YU Z, et al.A sentiment-enhanced personalized location recommendation system[C]//Proceedings of the 24th ACM Conference on Hypertext and Social Media.New York, USA:ACM Press, 2013:119-128. [44] XU G, FU B, GU Y.Point-of-interest recommendations via a supervised random walk algorithm[J].IEEE Intelligent Systems, 2016, 31(1):15-23. [45] BLEI D M, NG A Y, JORDAN M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research, 2003, 3:993-1022. [46] 高榕, 李晶, 杜博, 等.一种融合情景和评论信息的位置社交网络兴趣点推荐模型[J].计算机研究与发展, 2016, 53(4):752-763. GAO R, LI J, DU B, et al.A synthetic recommendation model for point-of-interest on location-based social networks:exploiting contextual information and review[J].Journal of Computer Research and Development, 2016, 53(4):752-763.(in Chinese) [47] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:ACL, 2014:1746-1751. [48] ZHANG J, CHOW C.MOCA:multi-objective, collaborative, and attentive sentiment analysis[J].IEEE Access, 2019, 7:10927-10936. [49] AL-SMADI M, TALAFHA B, AL-AYYOUB M, et al.Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews[J].International Journal of Machine Learning and Cybernetics, 2019, 10(8):2163-2175. [50] HE X, LIAO L, ZHANG H, et al.Neural collaborative filtering[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2017:173-182. [51] LONGSTAFF I D, CROSS J F.A pattern recognition approach to understanding the multi-layer perception[J].Pattern Recognition Letters, 1987, 5(5):315-319. [52] YIN H, WANG W, WANG H, et al.Spatial-aware hierarchical collaborative deep learning for POI recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2017, 29(11):2537-2551. [53] HINTON G E.Deep belief networks[J].Scholarpedia, 2009, 4(5):5947-5950. [54] CHANG B, JANG G, KIM S, et al.Learning graph-based geographical latent representation for point-of-interest recommendation[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York, USA:ACM Press, 2020:135-144. [55] ZHU J, GUO X.Deep neural model for point-of-interest recommendation fused with graph embedding representation[C]//Proceedings of International Conference on Wireless Algorithms, Systems, and Applications.Berlin, Germany:Springer, 2019:495-506. [56] HAN H, ZHANG M, HOU M, et al.STGCN:a spatial-temporal aware graph learning method for POI recommendation[C]//Proceedings of 2020 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2020:1052-1057. [57] QIAO Y, LUO X, LI C, et al.Heterogeneous graph-based joint representation learning for users and POIs in location-based social network[J].Information Processing & Management, 2020, 57(2):102-151. [58] YANG D, QU B, YANG J, et al.Revisiting user mobility and social relationships in LBSNs:a hypergraph embedding approach[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2019:2147-2157. [59] QIAN T, LIU B, NGUYEN Q V H, et al.Spatiotemporal representation learning for translation-based POI recommendation[J].ACM Transactions on Information Systems, 2019, 37(2):1-24. [60] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations.Washington D.C., USA:IEEE Press, 2017:1-14. [61] WANG Z, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2014:1112-1119. [62] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of Advances in Neural Information Processing System.Cambridge, USA:MIT Press, 2014:2672-2680. [63] LIU W, WANG Z J, YAO B, et al.Geo-ALM:POI recommendation by fusing geographical information and adversarial learning mechanism[C]//Proceedings of the 28th International Conference on Artificial Intelligence.New York, USA:ACM Press, 2019:1807-1813. [64] ZHOU F, YIN R, ZHANG K, et al.Adversarial point-of-interest recommendation[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2019:3462-34618. [65] REBUFFI S A, KOLESNIKOV A, SPERL G, et al.iCaRL:incremental classifier and representation learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2001-2010. [66] HE X, ZHANG H, KAN M Y, et al.Fast matrix factorization for online recommendation with implicit Feedback[C]//Proceedings of the 39th ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2016:549-558. [67] GONG Q, CHEN Y, HU J, et al.Understanding cross-site linking in online social networks[J].ACM Transactions on the Web, 2018, 12(4):1-29. [68] PAN W.A survey of transfer learning for collaborative recommendation with auxiliary data[J].Neurocomputing, 2016, 177:447-453. [69] LI D, GONG Z, ZHANG D.A common topic transfer learning model for crossing city POI recommendations[J].IEEE Transactions on Cybernetics, 2018, 49(12):4282-4295. [70] DING J, YU G, LI Y, et al.Learning from hometown and current city:cross-city POI recommendation via interest Drift and transfer learning[J].Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(4):1-28. [71] KAELBLING L P, LITTMAN M L, MOORE A W.Reinforcement learning:a survey[J].Journal of Artificial Intelligence Research, 1996, 4:237-285. [72] CHEN S Y, YU Y, DA Q, et al.Stabilizing reinforcement learning in dynamic environment with application to online recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:1187-1196. [73] ZHENG G, ZHANG F, ZHENG Z, et al.DRN:a deep reinforcement learning framework for news recommen-dation[C]//Proceedings of the World Wide Web Conference.New York, USA:ACM Press, 2018:167-176. [74] MNIH V, KAVUKCUOGLU K, SILVER D, et al.Human-level control through deep reinforcement learning[J].Nature, 2015, 518(7540):529-533. [75] SILVER D, LEVER G, HEESS N, et al.Deterministic policy gradient algorithms[C]//Proceedings of International Conference on Machine Learning.New York, USA:ACM Press, 2014:387-395. [76] MASSIMO D, RICCI F.Harnessing a generalised user behaviour model for next-POI recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2018:402-406. |