[1]ZHANG X,SONG L,LEI P.Improvement of FLICM for image segmentation[J].Journal of Computational Information Systems,2014,10(21):9429-9436.
[2]MOLTZ J H,BORNEMANN L,DICKEN V,et al.Segmentation of liver metastases in CT scans by adaptive thresholding and morphological processing[C]//Proceedings of MICCAI’08.Washington D.C.,USA:IEEE Press,2008:195.
[3]YADAV A K,ROY R,SOMWANSHI D.Thresholding and morphological based segmentation techniques for medical images[C]//Proceedings of 2016 International Conference on Recent Advances and Innovations in Engineering.Washington D.C.,USA:IEEE Press,2016:1-5.
[4]VARGA-SZEMES A,MUSCOGIURI G,SCHOEPF U J,et al.Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method[J].European Radiology,2016,26(5):1503-1511.
[5]代双凤,吕科,翟锐,等.基于3D区域增长法和改进的凸包算法相结合的全肺分割方法[J].电子与信息学报,2016,38(9):2358-2364.
[6]SCHERRER B,FORBES F,GARBAY C,et al.Distributed local MRF models for tissue and structure brain segmentation[J].IEEE Transactions on Medical Imaging,2009,28(8):1278-1295.
[7]LIU L P,SUN Y X,HUANG Q Y,et al.A region growing algorithm based on anisotropic filtering for image segmentation of the liver[J].Applied Mechanics and Materials,2014,644-650:4303-4306.
[8]杨柳,陈永林,王翊,等.基于核图割模型的肝脏CT图像肿瘤分割[J].计算机工程,2014,40(3):238-243.
[9]NOSRATI M S,HAMARNEH G.Incorporating prior knowledge in medical image segmentation:a survey[EB/OL].[2017-10-11].https://arxiv.org/abs/1607.01092v1.
[10]LI G,CHEN X,SHI F,et al.Automatic liver segmentation based on shape constraints and deformable graph cut in CT images[J].IEEE Transactions on Image Processing,2015,24(12):5315-5329.
[11]ATSUSHI S,SHIGERU N,AKINOBU S.Joint optimization of segmentation and shape prior from level-set-based statistical shape model,and its application to the automated segmentation of abdominal organs[J].Medical Image Analysis,2016,28(33):46-65.
[12]MILLETARI F,ROTHBERG A,JIA J,et al.Integrating statistical prior knowledge into convolutional neural networks[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2017:161-168.
[13]RAMANAN D,ZHU X.Face detection,pose estimation,and landmark localization in the wild[C]//Proceedings of Computer Vision and Pattern Recogni-tion.Washington D.C.,USA:IEEE Press,2012:2879-2886.
[14]ZHU Q,YEH M C,CHENG K T,et al.Fast human detection using a cascade of histograms of oriented gradients[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2006:1491-1498.
[15]GREENSPAN H,RUF A,GOLDBERGER J.Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J].IEEE Transactions on Medical Imaging,2006,25(9):1233-1245.
[16]FELZENSZWALB P,MCALLESTER D,RAMANAN D.A discriminatively trained,multiscale,deformable part model[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.
[17]BEZDEK J C,HATHAWAY R J,HOWARD R E,et al.Local convergence analysis of a grouped variable version of coordinate descent[J].Journal of Optimization Theory and Applications,1987,54(3):471-477.
[18]CRISTINACCE D,COOTES T F.Feature detection and tracking with constrained local models[C]//Proceedings of British Machine Vision Conference.Edinburgh,UK:DBLP Press,2006:929-938.
[19]ZHANG K,SONG H,ZHANG L.Active contours driven by local image fitting energy[J].Pattern Recognition,2010,43(4):1199-1206.
[20]LI C,XU C,GUI C,et al.Distance regularized level set evolution and its application to image segmentation[J].IEEE Transactions on Image Processing,2010,19(12):3243-3250.
[21]WANG X F,MIN H,ZOU L,et al.An efficient level set method based on multi-scale image segmentation and hermite differential operator[J].Neurocomputing,2015,188:90-101.
[22]PENG J,DONG F,CHEN Y,et al.A region-appearance-based adaptive variational model for 3D liver segmentation[J].Medical Physics,2014,41(4).
[23]LINGURARU M G,RICHBOURG W J,WATT J M,et al.Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts[C]//Proceedings of ABD-MICCAI’11.Berlin,Germany:Springer,2011:198-206.
[24]KIRSCHNER M,JUNG F,WESARG S.Automatic prostate segmentation in MR images with a probabilistic active shape model[C]//Proceedings of SPA’12.Washington D.C.,USA:IEEE Press,2012:26-28.
[25]GAO M,XU Z,LU L,et al.Segmentation label propagation using deep convolutional neural networks and dense conditional random field[C]//Proceedings of International Symposium on Biomedical Imaging.Washington D.C.,USA:IEEE Press,2016:1265-1268.
[26]HEIMANN T,GINNEKEN B V,STYNER M A,et al.Comparison and evaluation of methods for liver segmentation from CT datasets[J].IEEE Transactions on Medical Imaging,2009,28(8):1251-1265. |