[1] 马树志.基于深度学习的肝脏CT影像分割方法的研究与应用[D].长春:吉林大学,2017. [2] SAITO K,LU Huiming,TAN J K,et al.Automatic liver segmentation from multiphase CT images by using level set method[C]//Proceedings of International Conference on Control,Automation and Systems.Washington D.C.,USA:DEStech Publications,2017:1590-1592. [3] KRISHNAN K R,RADHAKRISHNAN S.Hybrid approach to classification of focal and diffused liver disorders using ultrasound images with wavelets and texture features[J].IET Image Processing,2017,11(7):530-538. [4] KUO Chaolun,CHENG Shyichyi,LIN Chihlang,et al.Texture-based treatment prediction by automatic liver tumor segmentation on computed tomography[C]//Proceedings of International Conference on Computer,Information and Telecommunication Systems.Washington D.C.,USA:IEEE Press,2017:128-132. [5] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [6] SUN Bin,MA Chunhui,JIN Xinyu,et al.Sparse segmentation algorithm of liver in CT images[C]//Proceedings of International Symposium on Computational Intelligence and Design.Washington D.C.,USA:IEEE Press,2017:457-460. [7] BEN-COHEN A,KLANG E,KERPEL A,et al.Fully convolutional network and sparsity-based dictionary learning for liver lesion detection in CT examinations[J].Neurocomputing,2018,275:1585-1594. [8] 郭树旭,马树志,李晶,等.基于全卷积神经网络的肝脏CT影像分割研究[J].计算机工程与应用,2017,53(18):126-131. [9] ZHANG Yao,HE Zhiqiang,ZHONG Cheng,et al.Fully convolutional neural network with post-processing methods for automatic liver segmentation from CT[C]//Proceedings of Chinese Automation Congress.Washington D.C.,USA:IEEE Press,2017:3864-3869. [10] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[EB/OL].[2018-07-01].https://arxiv.org/pdf/1505.04597.pdf. [11] CHRIST P F,ELSHAER M E A,ETTLINGER F,et al.Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2016:415-423. [12] 高静波,吴成茂,田小平,等.基于清晰度的彩色图像量子增强算法[J].西安邮电大学学报,2011,16(2):4-8. [13] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2015:3431-3440. [14] HE Kaiming,ZHANG Xianyu,REN Shaoqing,et al.Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:1026-1034. [15] ZHANG Peng,LIU Jie,CHEN Chen,et al.The algorithm study for using the back propagation neural network in CT image segmentation[C]//Proceedings of International Conference on Innovative Optical Health Science.Washington D.C.,USA:International Society for Optics and Photonics,2017:1-4. [16] 张明,吕晓琪,吴凉,等.基于深度残差学习的乘性噪声去噪方法[J].激光与光电子学进展,2018,55(3):41-47. [17] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-07-01].https://arxiv.org/pdf/1409.1556.pdf. [18] SUN Changjian,GUO Shuxu,ZHANG Huimao,et al.Liver lesion segmentation in CT images with MK-FCN[C]//Proceedings of Advanced Information Technology,Electronic and Automation Control Conference.Washington D.C.,USA:IEEE Press,2017:1794-1798. [19] NIE D,WANG Li,ADELI E,et al.3D fully convolutional networks for multimodal isointense infant brain image segmentation[J].IEEE Transactions on Cybernetics,2018,99:1-14. [20] 李泽宇,陈一民,赵艳,等.拟合正态分布曲线的肺野图像分割与三维重建[J].计算机工程与设计,2017,38(5):1277-1281. |