[1]CHUKLIN A,MARKOV I,RIJKE M D.Click models for Web search[J].Synthesis Lectures on Information Concepts,Retrieval,and Services,2015,7(3):110-115.
[2]CRASWELL N,ZOETER O,TAYLOR M,et al.An experimental comparison of click position-bias models[C]//Proceedings of 2008 International Conference on Web Search and Data Mining.New York,USA:ACM Press,2008:87-94.
[3]DUPRET G E,PIWOWARSKI B.A user browsing model to predict search engine click data from past observations[C]//Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2008:331-338.
[4]GUO F,LIU C,WANG Y M.Efficient multiple-click models in Web search[C]//Proceedings of the 2nd ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2009:124-131.
[5]GUO F,LIU C,KANNAN A,et al.Click chain model in Web search[C]//Proceedings of International Conference on World Wide Web.New York,USA:ACM Press,2009:11-20.
[6]CHAPELLE O,ZHANG Y.A dynamic Bayesian network click model for Web search ranking[C]//Proceedings of International Conference on World Wide Web.New York,USA:ACM Press,2009:1-10.
[7]SKIERA B,ECKERT J,HINZ O.An analysis of the importance of the long tail in search engine marketing[J].Electronic Commerce Research and Applications,2010,9(6):488-494.
[8]DEMPSTER A P,LAIRD N M,RUBIN D B,et al.Maximum Likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,1977,39(1):1-38.
[9]ZAHARIA M,CHOWDHURY M,FRANKLIN M J,et al.Spark:cluster computing with working sets[C]//Proceedings of USENIX Conference on Hot Topics in Cloud Computing.San Diego,USA:USENIX Association,2010:5-10.
[10]王超,刘奕群,马少平.搜索引擎点击模型综述[J].智能系统学报,2016,11(6):711-718.
[11]RICHARDSON M,DOMINOWSKA E,RAGNO R.Predicting clicks:estimating the click-through rate for new ads[C]//Proceedings of International Conference on World Wide Web.New York,USA:ACM Press,2007:521-530.
[12]王爱平,张功营,刘方.EM算法研究与应用[J].计算机技术与发展,2009,19(9):108-110.
[13]SHVACHKO K,KUANG H,RADIA S,et al.The Hadoop distributed file system[C]//Proceedings of 2010 IEEE Symposium on Mass Storage Systems and Technologies.Washington D.C.,USA:IEEE Press,2010:1-10.
[14]KARAU H,KONWINSKI A,WENDELL P,et al.Learning spark:lightning-fast big data analytics[M].[S.l.]:O’Reilly Media,Inc.,2015.
[15]FAROOK S,LAKSHMI G,TARAKESWARA B.Spark is superior to map reduce over big data[J].International Journal of Computer Applications,2016,133:13-16.
[16]KWON Y,BALAZINSKA M,HOWE B,et al.A study of skew in mapreduce applications[EB/OL].[2018-01-05].http://nuage.cs.washington.edu/pubs/opencirrus2011.pdf.
[17]RANA N,DESHMUKH S.Shuffle performance in apache Spark[J].International Journal of Engineering Research and Technology,2015,4(2):177-180.
[18]AKBARINIA R,LIROZ-GISTAU M,AGRAWAL D,et al.An efficient solution for processing skewed mapreduce jobs[J].Database and Expert Systems Applications,2015,9262:417-429.
[19]TANG Z,MA W,LI K,et al.A data skew oriented reduce placement algorithm based on sampling[J].IEEE Transactions on Cloud Computing,2016,15(6):13-16.
[20]LIU G,ZHU X,WANG J,et al.SP-partitioner:a novel partition method to handle intermediate data skew in Spark streaming[J].Future Generation Computer Systems,2017,86:1054-1063.
[21]DAVIDSON A,OR A.Optimizing shuffle performance in Spark[EB/OL].[2018-01-05].https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/reports/project16_report.pdf.
[22]BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140. |