[1] GANTZ J,REINSEL D.The digital universe in 2020:big data,bigger digital shadows,and biggest growth in the far east[EB/OL].[2019-02-10].https://www.speicherguide.de/download/dokus/IDC-Digital-Universe-Studie-iView-11.12.pdf. [2] ISINKAYE F O,FOLAJIMI Y O,OJOKOH B A.Recommendation systems:principles,methods and evaluation[J].Egyptian Informatics Journal,2015,16(3):261-273. [3] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [4] LIU Yingnan,XIE Jinkui,ZHANG Jiali,et al.Recommendation algorithm based on trust in social network[J].Journal of Chinese Computer Systems,2015,36(6):1165-1170.(in Chinese) 刘英南,谢瑾奎,张家利,等.社交网络中基于信任的推荐算法[J].小型微型计算机系统,2015,36(6):1165-1170. [5] BOKDE D,GIRASE S,MUKHOPADHYAY D.Matrix factorization model in collaborative filtering algorithms:a survey[J].Procedia Computer Science,2015,49(1):136-146. [6] MENG Xiangwu,LIANG Bi,DU Yulu,et al.Study on the utility evaluation of location-based mobile recom-mendation system[J].Chinese Journal of Computers,2019,42(12):2695-2721.(in Chinese) 孟祥武,梁弼,杜雨露,等.基于位置的移动推荐系统效用评价研究[J].计算机学报,2019,42(12):2695-2721. [7] HERNANDO A,BOBADILLA J,ORTEGA F.A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model[J].Knowledge-Based Systems,2016,97(4):188-202. [8] DU Dongfang,XU Tong,LU Yanan,et al.User rating prediction based on trust-driven probabilistic matrix factorization[J].Journal of Software,2018,29(12):3747-3763.(in Chinese) 杜东舫,徐童,鲁亚男,等.基于信任机制下概率矩阵分解的用户评分预测[J].软件学报,2018,29(12):3747-3763. [9] KOREN Y.Collaborative filtering with temporal dynamics[J].Communications of the ACM,2010,53(4):447-456. [10] DESHPANDE M,GEORGE K.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177. [11] WANG Jianfang,MIAO Yanling,HAN Pengfei,et al.Probabilistic matrix factorization algorithm of colla-borative filtering based on trust mechanism[J].Journal of Chinese Computer Systems,2019,40(1):31-35.(in Chinese) 王建芳,苗艳玲,韩鹏飞,等.一种基于信任机制的概率矩阵分解协同过滤推荐算法[J].小型微型计算机系统,2019,40(1):31-35. [12] CONDIE T,MINEIRO P,POLYZOTIS N,et al.Machine learning on big data[C]//Proceedings of 2013 IEEE International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2013:1242-1244. [13] TU Xiaohan,LIU Siping,LI Renfa.Improving matrix factorization recommendations for problems in big data[C]//Proceedings of 2017 IEEE International Conference on Big Data Analysis.Washington D.C.,USA:IEEE Press,2017:193-197. [14] THAN H A,RACHSUDA J T.Alternating least squares with incremental learning bias[C]//Proceedings of 2015 International Joint Conference on Computer Science and Software Engineering.Washington D.C.,USA:IEEE Press,2015:297-302. [15] STERCK H D,WINLAW M.A nonlinearly preconditioned conjugate gradient algorithm for rank-R canonical tensor approximation[J].Numerical Linear Algebra with Applications,2015,22(3):410-432. [16] YE Hanmin,ZHANG Qiuling,BAI Xue.A new collaborative filtering algorithm based on modified matrix factorization[C]//Proceedings of 2017 IEEE Advanced Information Technology Electronic and Automation Control Conference.Washington D.C.,USA:IEEE Press,2017:147-151. [17] ZHOU Y H,WILKINSON D,SCHREIBER R,et al.Large-scale parallel collaborative filtering for the netflix prize[C]//Proceedings of the 4th International Conference on Algorthmic Aspects in Information and Management.Berlin,Germany:Springer,2008:337-348. [18] QI Changxia.Study on several fusion nonlinear conjugate gradient methods[D].Qinhuangdao:Yanshan University,2017.(in Chinese) 齐昌霞.几种融合非线性共轭梯度法的研究[D].秦皇岛:燕山大学,2017. [19] LIU Zhengrong.Several new nonlinear conjugate gradient methods[D].Nanning:Guangxi University,2016.(in Chinese) 刘峥嵘.几种新的非线性共轭梯度法[D].南宁:广西大学,2016. [20] ZAHARIA M,CHOWDHURY M,DAS T,et al.Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computerin[C]//Proceedings of USENIX Conference on Networked Systems Design and Implementation.San Diego,USA:USENIX Association,2012:141-146. [21] WU Xindong,JI Shengwei.Comparative study on MapReduce and Spark for big data analytics[J].Journal of Software,2018,29(6):1770-1791.(in Chinese) 吴信东,嵇圣硙.MapReduce与Spark用于大数据分析之比较[J].软件学报,2018,29(6):1770-1791. |