作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (11): 81-85. doi: 10.19678/j.issn.1000-3428.0052998

• 移动互联与通信技术 • 上一篇    下一篇

基于绝对值累积的主用户动态到达频谱感知算法

赵季红1,2, 王文科1, 曲桦2, 徐西光2, 闫飞宇2, 颜皓靓1   

  1. 1. 西安邮电大学 通信与信息工程学院, 西安 710061;
    2. 西安交通大学 电子与信息工程学院, 西安 710049
  • 收稿日期:2018-10-26 修回日期:2018-12-22 发布日期:2018-12-11
  • 作者简介:赵季红(1963-),女,教授、博士,主研方向为宽带通信网;王文科(通信作者),硕士研究生;曲桦,教授、博士生导师;徐西光、闫飞宇,博士研究生;颜皓靓,硕士研究生。
  • 基金资助:
    国家自然科学基金(61531013);国家科技重大专项(2018ZX03001016)。

Spectrum Sensing Algorithm with Dynamic Arrival of Primary User Based on Absolute Value Cumulation

ZHAO Jihong1,2, WANG Wenke1, QU Hua2, XU Xiguang2, YAN Feiyu2, YAN Haoliang1   

  1. 1. School of Communications and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710061, China;
    2. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2018-10-26 Revised:2018-12-22 Published:2018-12-11

摘要: 在认知无线电网络的主用户动态到达频谱感知场景中,针对拉普拉斯脉冲噪声干扰导致频谱检测性能下降的问题,提出基于绝对值累积(AVC)的频谱感知算法。假设接收到的主用户信号服从泊松分布,对接收信号进行AVC处理抑制脉冲噪声干扰,并将处理信号累积求和作为判决统计量,得到判决统计量的均值与方差,求出判决门限理论表达式以判断主用户是否动态到达,从而实现频谱感知。理论分析与仿真结果表明,该算法在不同虚警概率、信噪比及累积求和采样点数量下的检测概率均优于改进的能量检测算法。

关键词: 认知无线电网络, 拉普拉斯噪声, 能量检测, 绝对值累积, 主用户

Abstract: The spectrum sensing scene with dynamic arrivals of Primary User(PU) in Cognitive Radio Network(CRN) often suffers from Laplace impulse noise,which leads to a drop in spectrum sensing performance.To address this problem,this paper proposes a spectrum sensing algorithm based on Absolute Value Cumulation(AVC).The algorithm assumes that received PU signals follow the Poisson distribution,and performs AVC on received signals to reduce interference of impulse noise.The accumulated sum of processed signals serves as the decisive statistics,and the mean value and variance of the decisive statistics are obtained.On this basis,the expression of decision threshold theory can be derived to judge whether the PU dynamically arrives,so as to implement spectrum sensing.Theoretical analysis and simulation results show that the proposed algorithm achieves a higher detection probability than the Improved Energy Detection(IED) algorithm under different false alarm probabilities,signal to noise ratio and sampling points.

Key words: Cognitive Radio Network(CRN), Laplace noise, Energy Detection(ED), Absolute Value Cumulation(AVC), Primary User(PU)

中图分类号: