[1] MITOLA J I, MAGUIRE G Q.Cognitive radio:making software radios more personal[J].IEEE Personal Communications, 1999, 6(4):13-18. [2] GAO Z, ZHU H, LIU Y, et al.Location privacy in database-driven cognitive radio networks:attacks and countermeasures[C]//Proceedings of IEEE INFOCOMʼ13.Washington D.C., USA:IEEE Press, 2013:153-165. [3] Google spectrum database[EB/OL].[2020-11-01].https://www.google.com/get/spectrumdatabase/. [4] Microsoft white spaces database[EB/OL].[2020-11-01].http://whitespaces.microsoftspectrum.com. [5] CHEN V, DAS E S, ZHU L, et al.Protocol to Access White-Space(PAWS) databases[EB/OL].[2020-11-01].https://www.rfc-editor.org/info/rfc7545. [6] GRISSA M, YAVUZ A A, HAMDAOUI B.Location privacy in cognitive radios with multi-server private information retrieval[J].IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4):949-962. [7] CHAUM D, RIVEST R L, SHERMAN A T.Blind signatures for untraceable payments[EB/OL].[2020-11-01].https://doi.org/10.1007/978-1-4757-0602-4_18. [8] ZHANG L, FANG C, LI Y, et al.Optimal strategies for defending location inference attack in database-driven CRNs[C]//Proceedings of IEEE International Conference on Communications.Washington D.C., USA:IEEE Press, 2015:158-167. [9] LI H, PEI Q, ZHANG W.Location privacy-preserving channel allocation scheme in cognitive radio networks[J].International Journal of Distributed Sensor Networks, 2016, 12(7):379-394. [10] GRISSA M, YAVUZ A A, HAMDAOUI B.Cuckoo filter-based location-privacy preservation in database-driven cognitive radio networks[C]//Proceedings of 2015 World Symposium on Computer Networks and Information Security.Washington D.C., USA:IEEE Press, 2016:235-247. [11] TROJA E, BAKIRAS S.Efficient location privacy for moving clients in database-driven dynamic spectrum access[C]//Proceedings of International Conference on Computer Communication & Networks.Washington D.C., USA:IEEE Press, 2015:562-578. [12] GRISSA M, YAVUZ A A, HAMDAOUI B.When the hammer meets the nail:multi-server PIR for database-driven CRN with location privacy assurance[EB/OL].[2020-11-01].https://arxiv.org/pdf/1705.01085.pdf. [13] BAHRAK B, BHATTARAI S, ULLAH A, et al.Protecting the primary users' operational privacy in spectrum sharing[C]//Proceedings of 2014 IEEE International Symposium on Dynamic Spectrum Access Networks.Washington D.C., USA:IEEE Press, 2014:369-378. [14] LIU J Q, ZHANG C.DPavatar:a real-time location protection framework for incumbent users in cognitive radio networks[J].IEEE Transactions on Mobile Computing, 2019, 19(3):552-565. [15] GUAN C, MOHAISEN A, SUN Z, et al.When smart TV meets CRN:privacy-preserving fine-grained spectrum access[C]//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2017:452-469. [16] ZHANG Z, ZHANG H, HE S, et al.Bilateral privacy-preserving utility maximization protocol in database-driven cognitive radio networks[J].IEEE Transactions on Dependable & Secure Computing, 2020, 17(2):236-247. [17] SHAMIR A.How to share a secret[J].Communications of the ACM, 1979, 22(11):612-613. [18] DOU Y, LI H, ZENG K C, et al.Preserving incumbent users' privacy in exclusion-zone-based spectrum access systems[C]//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2017:687-699. [19] DOUT Y, ZENGT K, LIT H, et al.P2-SAS:preserving users' privacy in centralized dynamic spectrum access systems[C]//Proceedings of ACM International Symposium on Mobile Ad Hoc Networking & Computing.New York, USA:ACM Press, 2016:159-168. [20] LI H, YANG Y, DOU Y, et al.PeDSS:privacy enhanced and database-driven dynamic spectrum sharing[C]//Proceedings of IEEE International Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2019:365-378. [21] LI H N.Channel selection information hiding scheme for tracking user attack in cognitive radio networks[J].China Communications, 2014, 11(3):125-136. [22] XUE K, HONG J, XUE Y, et al.CABE:a new comparable attribute-based encryption construction with 0-encoding and 1-encoding[J].IEEE Transactions on Computers, 2017, 66(9):1491-1503. |