[1] GroupLens.MovieLens-1M dataset[EB/OL].[2019-02-15].https://grouplens.org/datasets/movielens/1m/. [2] ZHANG Lianwen,GUO Haipeng.Introduction to Bayesian networks[M].Beijing:Science Press,2006.(in Chinese)张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006. [3] KOLLER D,FRIEDMAN N.Probabilistic graphical models:principles and techniques[M].WANG Feiyue,HAN Suqing,Translate.Beijing:Tsinghua University Press,2015.(in Chinese) KOLLER D,FRIEDMAN N.概率图模型:原理与技术[M].王飞跃,韩素青,译.北京:清华大学出版社,2015. [4] SCHÜTZ W,SCHÄFER R.Bayesian networks for estimating the user's interests in the context of a configuration task[C]//Proceedings of UM2001 Workshop on Machine Learning for User Modeling.Washington D.C.,USA:IEEE Press,2001:13-17. [5] ZHANG Hongyi,WANG Liwei,CHEN Yuxi.Research progress of probabilistic graphical models:a survey[J].Journal of Software,2013,24(11):2476-2497.(in Chinese)张宏毅,王立威,陈瑜希.概率图模型研究进展综述[J].软件学报,2013,24(11):2476-2497. [6] FRIEDMAN N.The Bayesian structural EM algorithm[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.[S.l.]:Morgan Kaufmann Publishers Inc.,1998:129-138. [7] HAN Yanan,CAO Han,LIU Liangliang.Collaborative filtering recommendation algorithm based on score matrix filling and user interest[J].Computer Engineering,2016,42(1):36-40.(in Chinese)韩亚楠,曹菡,刘亮亮.基于评分矩阵填充与用户兴趣的协同过滤推荐算法[J].计算机工程,2016,42(1):36-40. [8] ZHAO Guoshuai,QIAN Xueming,XIE Xing.User-service rating prediction by exploring social users' rating behaviors[J].IEEE Transactions on Multimedia,2016,18(3):496-506. [9] KASSAK O,KOMPAN M,BIELIKOVA M.User preference modeling by global and individual weights for personalized recommendation[J].Acta Polytechnica Hungarica,2015,12(8):27-41. [10] WEN Junhao,YUAN Peilei,ZENG Jun,et al.Research on collaborative filtering recommendation algorithm based on topic of tags[J].Computer Engineering,2017,43(1):247-252,258.(in Chinese)文俊浩,袁培雷,曾骏,等.基于标签主题的协同过滤推荐算法研究[J].计算机工程,2017,43(1):247-252,258. [11] FANG Bing,NIU Xiaoting.Tag-based matrix factorization recommendation algorithm[J].Application Research of Computers,2017,34(4):1022-1025,1031.(in Chinese)方冰,牛晓婷.基于标签的矩阵分解推荐算法[J].计算机应用研究,2017,34(4):1022-1025,1031. [12] KIM J S,JUN C H.Ranking evaluation of institutions based on a Bayesian network having a latent variable[J].Knowledge-Based Systems,2013,50:87-99. [13] GAO Renshang,YUE Kun,WU Hao,et al.Modeling user preference from rating data based on the Bayesian network with a latent variable[C]//Proceedings of International Conference on Web-Age Information Management.Berlin,Germany:Springer,2016:3-16. [14] GAO Yan,YUE Kun,WU Hao,et al.Construction and inference of latent variable model oriented to user preference discovery[J].Journal of Computer Applications,2017,37(2):360-366.(in Chinese)高艳,岳昆,武浩,等.面向用户偏好发现的隐变量模型构建与推理[J].计算机应用,2017,37(2):360-366. [15] HUANG Y,BIAN L.A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet[J].Expert Systems with Applications,2009,36(1):933-943. [16] CHAPELLE O,ZHANG Y.A dynamic Bayesian network click model for Web search ranking[C]//Proceedings of International Conference on World Wide Web.New York,USA:ACM Press,2009:1-10. [17] YUE Kun,WEI Mujin,TIAN Kailin,et al.Representing and inferring causalities among classes of multidimensional data[M]//LI Qing,FENG Ling,PEI Jina,et al.Advances in data and Web management.Berlin,Germany:Springer,2009:223-234. [18] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [19] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [20] FISCHER A,IGEL C.An introduction to restricted Boltzmann machines[C]//Proceedings of Iberoamerican Congress on Pattern Recognition.Berlin,Germany:Springer,2012:14-36. [21] LIU Gang,XU Chao,CHEN Siyi,et al.Image classification with stacked restricted Boltzmann machines and hybrid neural network[J].Journal of Chinese Computer Systems,2017,38(9):2146-2151.(in Chinese)刘罡,徐超,陈思义,等.结合深度置信网络与混合神经网络的图像分类方法[J].小型微型计算机系统,2017,38(9):2146-2151. [22] MCLACHLAN G,KRISHNAN T.The EM algorithm and extensions[M].New York,USA:John Wiley & Sons,2007. |