1 |
PRABAKARAN R, PRADEEPKANDHASAMY J, ARUN M. A survey on recommendation systems using collaborative filtering techniques[C]//Proceedings of the 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). Washington D. C., USA: IEEE Press, 2023: 1445-1450.
|
2 |
潘润超, 虞启山, 熊泓霏, 等. 基于深度图神经网络的协同推荐算法. 计算机应用, 2023, 43 (9): 2741- 2746.
doi: 10.11772/j.issn.1001-9081.2022091361
|
|
PAN R C, YU Q S, XIONG H F, et al. Collaborative recommendation algorithm based on deep graph neural network. Journal of Computer Applications, 2023, 43 (9): 2741- 2746.
doi: 10.11772/j.issn.1001-9081.2022091361
|
3 |
MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks. Annual Review of Sociology, 2001, 27, 415- 444.
doi: 10.1146/annurev.soc.27.1.415
|
4 |
CIALDINI R B, GOLDSTEIN N J. Social influence: compliance and conformity. Annual Review of Psychology, 2004, 55, 591- 621.
doi: 10.1146/annurev.psych.55.090902.142015
|
5 |
徐上上, 孙福振, 王绍卿, 等. 基于图神经网络的异构信任推荐算法. 计算机工程, 2022, 48 (9): 89-95, 104.
doi: 10.19678/j.issn.1000-3428.0062235
|
|
XU S S, SUN F Z, WANG S Q, et al. Heterogeneous trust recommendation algorithm based on graph neural networks. Computer Engineering, 2022, 48 (9): 89-95, 104.
doi: 10.19678/j.issn.1000-3428.0062235
|
6 |
YANG X Y, XU F, YU J, et al. Graph neural network-guided contrastive learning for sequential recommendation. Sensors, 2023, 23 (12): 5572.
doi: 10.3390/s23125572
|
7 |
HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[EB/OL]. [2023-10-17]. http://arxiv.org/abs/2002.02126.
|
8 |
许凤, 杨兴耀, 于炯, 等. 小波卷积增强的对比学习推荐算法. 计算机工程, 2023, 49 (5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
|
XU F, YANG X Y, YU J, et al. Wavelet convolution enhanced contrastive learning recommendation algorithm. Computer Engineering, 2023, 49 (5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
9 |
WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 165-174.
|
10 |
SONG C H, WANG B, JIANG Q X, et al. Social recommendation with implicit social influence[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 1788-1792.
|
11 |
LIU F, CHENG Z Y, ZHU L, et al. Interest-aware message-passing GCN for recommendation[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 1296-1305.
|
12 |
FAN Z W, XU K, DONG Z, et al. Graph collaborative signals denoising and augmentation for recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2023: 2037-2041.
|
13 |
宋玉龙, 马文明, 刘彤彤. 融合用户信任度的概率矩阵分解群组推荐算法. 计算机工程, 2022, 48 (1): 105- 111.
doi: 10.19678/j.issn.1000-3428.0059526
|
|
SONG Y L, MA W M, LIU T T. Group recommendation algorithm incorporating user trust with probability matrix factorization. Computer Engineering, 2022, 48 (1): 105- 111.
doi: 10.19678/j.issn.1000-3428.0059526
|
14 |
MA H, YANG H X, LÜ M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2008: 931-940.
|
15 |
ZHAO T, MCAULEY J, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2014: 261-270.
|
16 |
JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2010: 135-142.
|
17 |
GUO G, ZHANG J, YORKE-SMITH N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 123-129.
|
18 |
LIU H F, JING L P, YU J, et al. Social recommendation with learning personal and social latent factors. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (7): 2956- 2970.
doi: 10.1109/TKDE.2019.2961666
|
19 |
SHOKEEN J, RANA C. A trust and semantic based approach for social recommendation. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (11): 10289- 10303.
doi: 10.1007/s12652-020-02806-1
|
20 |
GUPTA A, MATTA P, PANT B. Graph neural network: current state of art, challenges and applications. Materials Today: Proceedings, 2021, 46, 10927- 10932.
doi: 10.1016/j.matpr.2021.01.950
|
21 |
GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Transactions on Recommender Systems, 2023, 1 (1): 1- 51.
doi: 10.48550/arXiv.2109.12843
|
22 |
|
23 |
WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 235-244.
|
24 |
WU L, LI J W, SUN P J, et al. DiffNet: a neural influence and interest diffusion network for social recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (10): 4753- 4766.
doi: 10.1109/TKDE.2020.3048414
|
25 |
LI N, GAO C, JIN D P, et al. Disentangled modeling of social homophily and influence for social recommendation. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (6): 5738- 5751.
doi: 10.1109/TKDE.2022.3185388
|
26 |
LIAO J, ZHOU W, LUO F J, et al. SocialLGN: light graph convolution network for social recommendation. Information Sciences, 2022, 589, 595- 607.
doi: 10.1016/j.ins.2022.01.001
|
27 |
WU J, FAN W, CHEN J, et al. Disentangled contrastive learning for social recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2022: 4570-4574.
|
28 |
WU B, KANG Y, GUAN B, et al. We are not so similar: alleviating user representation collapse in social recommendation[C]//Proceedings of the 2023 ACM International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2023: 378-387.
|