[1] SCHAPIRE R E,SINGER Y.BoosTexter:a Boosting-based system for text categorization[J].Machine Learning,2000,39(2/3):135-168. [2] DE COMITÉ F,GILLERON R,TOMMASI M.Learning multi-label alternating decision trees from texts and data[M]//PETRA P.Machine learning and data mining in pattern recognition.Berlin,Germany:Springer,2003:35-49. [3] BOUTELL M R,LUO J B,SHEN X P,et al.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771. [4] BARUTCUOGLU Z,SCHAPIRE R E,TROYANSKAYA O G.Hierarchical multi-label prediction of gene function[J].Bioinformatics,2006,22(7):830-836. [5] TSOUMAKAS G,KATAKIS I.Multi-label classification[J].International Journal of Data Warehousing and Mining,2007,3(3):1-13. [6] ZHANG Minling,ZHOU Zhihua.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [7] READ J,PFAHRINGER B,HOLMES G,et al.Classifier chains for multi-label classification[J].Machine Learning,2011,85(3):333-359. [8] CHEN Linlin,CHEN Degang.A classifier chain method for multi-label learning based on kernel alignment[J].Journal of Nanjing University(Natural Sciences),2018,54(4):67-74.(in Chinese)陈琳琳,陈德刚.一种基于核对齐的分类器链的多标记学习算法[J].南京大学学报(自然科学版),2018,54(4):67-74. [9] TSOUMAKAS G,KATAKIS I,VLAHAVAS I.Random k-labelsets for multilabel classification[J].IEEE Transactions on Knowledge and Data Engineering,2011,23(7):1079-1089. [10] ELISSEEFF A,WESTON J.A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2001:681-687. [11] JIANG A W,WANG C H,ZHU Y P.Calibrated Rank-SVM for multi-label image categorization[C]//Proceedings of 2008 IEEE International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2008:15-26. [12] VAPNIK V.The nature of statistical learning theory[M].Berlin,Germany:Springer,1995. [13] ZHANG M L,ZHOU Z H.Multilabel neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351. [14] GRODZICKI R,MANDZIUK J,WANG L P.Improved multilabel classification with neural networks[M]//GÜNTERRUDOLP H,THOMASJANSE N,SIMONLUCA S,et al.Parallel problem solving from nature-PPSN X.Berlin,Germany:Springer,2008:409-416. [15] ZHANG M L,ZHOU Z H.ML-KNN:a lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048. [16] ZHANG Minling.An improved multi-label lazy learning approach[J].Journal of Computer Research and Development,2012,49(11):2271-2282.(in Chinese)张敏灵.一种新型多标记懒惰学习算法[J].计算机研究与发展,2012,49(11):2271-2282. [17] SHALEV-SHWARTZ S,SINGER Y,SREBRO N,et al.Pegasos:primal estimated sub-gradient solver for SVM[J].Mathematical Programming,2011,127(1):3-30. [18] ZHANG Shijiang,CHAI Jing.Partial label learning algorithm based on maximum margin[J].Science Technology and Engineering,2018,18(28):114-120.(in Chinese)张仕将,柴晶.一种基于最大间隔的偏标记学习算法[J].科学技术与工程,2018,18(28):114-120. [19] CRAMMER K,SINGER Y.On the algorithmic implementation of multiclass kernel-based vector machines[J].Journal of Machine Learning Research,2002,2(2):265-292. [20] TANG L,XUAN Q,XIONG R,et al.A multi-class large margin classifier[J].Journal of Zhejiang University-Science A,2009,10(2):253-262. [21] LI Yukun,ZHANG Minling,GENG Xin.Leveraging implicit relative labeling-importance information for effective multi-label learning[C]//Proceedings of 2015 IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2015:123-156. [22] TSOUMAKAS G,VILCEK J,XIOUFITS E S.Mulan:a Java library for multi-label learning[EB/OL].[2019-03-10].http://mulan.sourceforge.net/datasets.html. [23] ZHANG Minling.ML-RBF:RBF neural networks for multi-label learning[J].Neural Processing Letters,2009,29(2):61-74. |