[1] NAONORI U,SAITO K.Parametric mixture models for multi-labeled text[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambrige,USA:MIT Press,2002:737-744. [2] BOUTELL M R,LUO Jiebo,SHEN Xipeng,et al.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771. [3] ZHANG Minling,ZHOU Zhihua.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [4] ZHANG Minglin,WU Lei.LIFT:multi-label learning with label-specific features[C]//Proceedings of International Joint Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2011:1609-1614. [5] HUANG Jun,LI Guorong,HUANG Qingming,et al.Learning label-specific features and class-dependent labels for multi-label classification[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(12):3309-3323. [6] ZHAN Wang,ZHANG Minling.Multi-label learning with label-specific features via clustering ensemble[C]//Proceedings of 2017 IEEE International Conference on Data Science and Advanced Analytics.Washington D.C.,USA:IEEE Press,2017:129-136. [7] READ J,PFAHRINGER B,HOLMES G,et al.Classifier chains for multi-label classification[J].Machine Learning,2011,85(3):333. [8] MITCHELL T,BUCHANAN B,DEJONG G,et al.Machine learning[M].New York,USA:McGraw-Hill Companies,2003. [9] HUANG Jun,LI Guorong,HUANG Qingming,et al.Joint feature selection and classification for multilabel learning[J].IEEE Transactions on Cybernetics,2017,48(3):1-14. [10] 胡海峰,耿静静,冯巧遇,等.哈希快速多标记学习算法[J].信号处理,2017,33(8):1065-1072. [11] 胡敏杰,杨红和,傅为,等.基于特征关联的多标记谱特征选择算法[J].闽南师范大学学报(自然科学版),2017,30(2):12-22. [12] 郝虹.基于样例及属性特征分析的多标记分类算法研究[D].济南:山东师范大学,2015. [13] SUN Lu,KUDO M,KIMURA K.Multi-label classification with meta-label-specific features[C]//Proceedings of the 23rd International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-8. [14] LEE D D,SEUNG H S.Algorithms for non-negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2001:556-562. [15] 姜小燕,孙福明,李豪杰.基于图正则化和稀疏约束的半监督非负矩阵分解[J].计算机科学,2016,43(7):77-82. [16] KASHEF S,NEZAMABADI-POUR H,NIKPOUR B.FCBF3Rules:a feature selection method for multi-label datasets[C]//Proceedings of the 3rd Conference on Swarm Intelligence and Evolutionary Computation.Washingtong D.C.,USA:IEEE Press,2018:1-5. [17] CHEN Zijie.A two-stage framework for discovering latent correlations in multi-label learning[C]//Proceedings of International Conference on Machine Learning and Cybernetics.Washington D.C.,USA:IEEE Press,2017:439-445. [18] JUNOH A K,AHMAD F K,MOHSEN M F M,et al.Open research directions for multi label learning[C]//Proceedings of 2018 IEEE Symposium on Computer Applications and Industrial Electronics.Washingtong D.C.,USA:IEEE Press,2018:125-128. [19] HUANG Shengjun,ZHOU Zhihua.Multi-label learning by exploiting label correlations locally[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2012:949-955. |