[1] WU Qiong,ZENG Qingpeng.Mining positive and negative quantitative association rules based on multi-objective fireworks optimization algorithm[J].Computer Engineering,2017,43(6):158-168.(in Chinese)吴琼,曾庆鹏.基于多目标烟花优化算法的正负量化关联规则挖掘[J].计算机工程,2017,43(6):158-168. [2] ZHANG Chunkai,TIAN Panbo,ZHANG Xudong,et al.HashEclat:an efficient frequent itemset algorithm[J].International Journal of Machine Learning and Cybernetics,2019(4):1-14. [3] BI Jianxin,ZHANG Qishan.Overview of association rules mining algorithms[J].Strategic Study of CAE,2005(4):92-98.(in Chinese)毕建欣,张岐山.关联规则挖掘算法综述[J].中国工程科学,2005(4):92-98. [4] XIA Yanmin,TANG Bing,TANG Mingdong,et al.Web API combinatorial pattern discovery using association rule mining[J].Journal of Chinese Computer Systems,2019,40(10):2195-2201.(in Chinese)夏艳敏,唐兵,唐明董,等.利用关联规则挖掘的Web API组合模式发现[J].小型微型计算机系统,2019,40(10):2195-2201. [5] ZHAO Xuejian,ZHANG Xinhui,PAN Wang,et al.A weighted frequent itemset mining algorithm for intelligent decision in smart systems[J].IEEE Access,2018,6:29271-29282. [6] BARALIS E,CAGLIERO L,GARZA P.Planning stock portfolios by means of weighted frequent itemsets[J].Expert Systems with Applications,2017,86:1-17. [7] LIN C W,GAN W S,FOURNIER-VIGER P,et al.Mining weighted frequent itemsets without candidate generation in uncertain databases[J].International Journal of Information Technology and Decision Making,2017,16(6):1-31. [8] DJENOURI Y,FOURNIER-VIGER P,BELHADI A,et al.Metaheuristics for frequent and high-utility itemset mining[M].Berlin,Germany:Springer,2019. [9] ZIDA S,FOURNIER-VIGER P,LIN C W,et al.EFIM:a fast and memory efficient algorithm for high-utility itemset mining[J].Knowledge and Information Systems,2017,51(2):595-625. [10] LIN C W,GAN W,FOURNIER-VIGER P,et al.Efficient mining of high utility itemsets with multiple minimum utility thresholds[J].Engineering Applications of Artificial Intelligence,2018,69:112-126. [11] LAN G C,HONG T P,LEE H Y,et al.Tightening upper bounds for mining weighted frequent itemsets[J].Intelligent Data Analysis,2015,19(2):413-429. [12] NGUYEN H,VO B,NGUYEN M,et al.An efficient algorithm for mining frequent weighted itemsets using interval word segments[J].Applied Intelligence,2016,45(4):1008-1020. [13] LEE G,YUN U,RYU K H.Mining frequent weighted itemsets without storing transaction IDs and generating candidates[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2017,25(1):111-144. [14] VO B.An efficient method for mining frequent weighted closed itemsets from weighted item transaction databases[J].Journal of Information Science and Engineering,2017,33(1):199-216. [15] LEE G,YUN U,RYANG H.Mining weighted erasable patterns by using underestimated constraint-based pruning technique[M].[S.l.]:IOS Press,2015. [16] YUN U,LEE G.Incremental mining of weighted maximal frequent itemsets from dynamic databases[M].[S.l.]:Pergamon Press Inc.,2016. [17] HUANG Mingxuan,JIANG Caoqing,HE Donglei.Post translation extension of cross language query based on matrix weighted association rules[J].Pattern Recognition and Artificial Intelligence,2018,31(10):21-32.(in Chinese)黄名选,蒋曹清,何冬蕾.基于矩阵加权关联规则的跨语言查询译后扩展[J].模式识别与人工智能,2018,31(10):21-32. [18] HUONG B,BAY V,HAM N,et al.A weighted N-list-based method for mining frequent weighted itemsets[J].Expert Systems with Application,2018,96:388-405. [19] YIN Yuan,ZHANG Chang,WEN Kai,et al.Maximal frequent itemset mining algorithm based on DiffNodeset structure[J].Journal of Computer Applications,2019,38(2):3438-3443.(in Chinese)尹远,张昌,文凯,等.基于DiffNodeset结构的最大频繁项集挖掘算法[J].计算机应用,2019,38(2):3438-3443. [20] DENG Zhihong.DiffNodesets:an efficient structure for fast mining frequent itemsets[J].Applied Soft Computing,2016,41:214-223. [21] FOURNIER-VIGER P,GOMARIZ A,SOLTANI A,et al.SPMF:OpenSource data mining platform[EB/OL].[2019-03-15].http://www.philippe-fournier-viger.com/spmf. |