[1] REN Tingyu,LIANG Zhongyao,CHEN Huili,et al.Clustering of lake variables based on pattern recognition method[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(2):335-341.(in Chinese)任婷玉,梁中耀,陈会丽,等.基于模式识别方法的湖泊水质污染特征聚类研究[J].北京大学学报(自然科学版),2019,55(2):335-341. [2] LAFFERTY J.A study of smoothing methods for language models applied to information retrieval[J].ACM Transactions on Information Systems,2004,22(2):179-214. [3] LANDER E S,LANGRIDGE R,SACCOCIO D M.Computing in molecular biology:mapping and interpreting biological information[J].Computer,1991,24(11):6-13. [4] LI Taoying,LI Feng,CHEN Yan,et al.Fast clustering for sparse network of retail products associated big data[J].Control and Decision,2018,33(6):1117-1122.(in Chinese)李桃迎,李峰,陈燕,等.零售商品关联大数据稀疏网络的快速聚类算法[J].控制与决策,2018,33(6):1117-1122. [5] COHEN-ADDAD V,KLEIN P H,MATHIEU C.Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics[J].SIAM Journal on Computing,2019,48(2):644-667. [6] AHMADIAN S,NOROUZI-FARD A,SVENSSON O,et al.Better guarantees for k-means and euclidean k-median by primal-dual algorithms[C]//Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science.Washington D.C.,USA:IEEE Press,2017:125-136. [7] XIE Juanying,ZHANG Yan,XIE Weixin,et al.A novel rough K-means clustering algorithm based on the weight of density[J].Journal of Shandong University(Natural Science),2010,45(7):1-6.(in Chinese)谢娟英,张琰,谢维信,等.一种新的密度加权粗糙K-均值聚类算法[J].山东大学学报(理学版),2010,45(7):1-6. [8] KARYPIS G,HAN E H,KUMAR V.Chameleon:hierarchical clustering using dynamic modeling[J].Computer,2002,32(8):68-75. [9] GUHA S,RASTOGI R,SSHIM K.CURE:an efficient clustering algorithm for large databases[J].Information Systems,1998,26(1):35-58. [10] ZHOU Shuigeng,ZHOU Aoying,CAO Jing.DBSCAN algorithm based on data partition[J].Journal of Computer Research and Development,2000,37(10):1153-1159.(in Chinese)周水庚,周傲英,曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展,2000,37(10):1153-1159. [11] WANG W,YANG J,MUNTZ R R.STING:a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases.Athens,Greece:[s.n.],1997:27-29. [12] CHEN L,YU T,CHIRKOVA R.Wavecluster with differential privacy[J].Computer Science,2015,11(2):191-198. [13] LU Yonggang,HOU Xiali,CHEN Xurong.A novel travel-time based similarity measure for hierarchical clustering[J].Neurocomputing,2016,173(1):3-8. [14] RAMIREZ E H,BRENA R,MAGATTI D,et al.Topic model validation[J].Neurocomputing,2012,76(1):125-133. [15] WANG Yu,LI Jihong.Confidence interval for F1 measure of algorithm performance based on blocked 3×2 cross-validation[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(3):651-659. [16] SANTOS J M,EMERECHTS M.On the use of the adjusted rand index as a metric for evaluating supervised classification[C]//Proceedings of International Conference on Artificial Neural Networks.Limassol,Cyprus:[s.n.],2009:175-184. [17] LICHMAN M.UCI machine learning repository[EB/OL].[2019-03-20].http://archive.ics.uci.edu/ml. [18] LU Y,WAN Y.Clustering by sorting potential values:a novel potential-based clustering method[J].Pattern Recognition,2012,45(9):3512-3522. [19] LU Y,WAN Y.PHA:a fast potential-based hierarchical agglomerative clustering method[J].Pattern Recognition,2013,46(5):1227-1239. |