作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (3): 227-236. doi: 10.19678/j.issn.1000-3428.0057234

• 移动互联与通信技术 • 上一篇    下一篇

群智感知中基于时空关联性的用户激励机制

周强1,2, 李鹏1,2, 聂雷1,2   

  1. 1. 武汉科技大学 计算机科学与技术学院, 武汉 430065;
    2. 智能信息处理与实时工业系统湖北省重点实验室, 武汉 430065
  • 收稿日期:2020-01-16 修回日期:2020-03-12 发布日期:2020-03-16
  • 作者简介:周强(1996-),男,硕士研究生,主研方向为群智感知;李鹏(通信作者),副教授、博士;聂雷,讲师、博士。
  • 基金资助:
    国家自然科学基金(61502359,61802286);湖北省自然科学基金(2018CFB424)。

User Incentive Mechanism Based on Spatial-Temporal Correlation for Crowd Sensing

ZHOU Qiang1,2, LI Peng1,2, NIE Lei1,2   

  1. 1. College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China;
    2. Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, China
  • Received:2020-01-16 Revised:2020-03-12 Published:2020-03-16

摘要: 为在群智感知系统中实现有效的用户激励,提出基于显性与隐性时空关联的两种用户激励算法。将显性时空关联的用户激励问题转化为集合覆盖问题并利用贪心算法对其进行求解,同时结合显性时空关联算法和马尔科夫模型求解隐性时空关联的用户激励问题。在仿真数据和真实数据集上的实验结果表明,与传统最小化花费算法、最大化覆盖算法和最小化花费覆盖数比值算法相比,显性时空关联算法和隐性时空关联算法有效解决了感知任务完成率低且花费高的问题,能在实现用户激励的情况下最大化社会收益。

关键词: 群智感知, 用户激励机制, 时空关联性, 马尔科夫模型, 集合覆盖

Abstract: To realize effective user incentive in crowd sensing systems,this paper proposes two user incentive algorithms based on dominant and recessive spatial-temporal characteristics.The user incentive problem of dominant spatial-temporal correlation is transformed into a set coverage problem,which is solved by using the greedy algorithm.Then the dominant spatial-temporal correlation algorithm is combined with the Markov model to solve the user incentive problem of recessive spatial-temporal correlation.Experimental results on simulated data and real datasets show that compared with the traditional Minimum Cost(MC) algorithm,Maximum Overlap(MO) algorithm,and Minimum Cost Overlap(MCO) algorithm,the dominant and recessive spatial-temporal correlation algorithms can realize user incentive with the social benefits maximized and solve the problem of low completion rate and high cost of sensing tasks.

Key words: crowd sensing, user incentive mechanism, spatial-temporal correlation, Markov model, set coverage

中图分类号: