[1] WU D P, SHI H, WANG H G, et al.A feature-based learning system for Internet of Things applications[J].IEEE Internet of Things Journal, 2019, 6(2):1928-1937. [2] XU X L, LIU Q X, LUO Y, et al.A computation offloading method over big data for IoT-enabled cloud-edge computing[J].Future Generation Computer Systems, 2019, 95:522-533. [3] GONG W, ZHANG B X, LI C.Task assignment in mobile crowdsensing:present and future directions[J].IEEE Network, 2018, 32(4):100-107. [4] WANG X D, GARG S, LIN H, et al.PPCS:an intelligent privacy-preserving mobile-edge crowdsensing strategy for industrial IoT[J].IEEE Internet of Things Journal, 2021, 8(13):10288-10298. [5] MARJANOVIĆ M, ANTONIĆ A, ŽARKO I P.Edge computing architecture for mobile crowdsensing[J].IEEE Access, 2018, 6:10662-10674. [6] BELLI D, CHESSA S, FOSCHINI L, et al.Enhancing mobile edge computing architecture with human-driven edge computing model[C]//Proceedings of the 14th International Conference on Intelligent Environments.Washington D.C., USA:IEEE Press, 2018:95-98. [7] LAMAAZI H, MIZOUNI R, SINGH S, et al.A mobile edge-based crowdsensing framework for heterogeneous IoT[J].IEEE Access, 2020, 8:207524-207536. [8] JIANG Y L, ZHANG K, QIAN Y, et al.Cooperative task allocation in edge computing assisted vehicular crowdsensing[C]//Proceedings of IEEE Global Communications Conference.Washington D.C., USA:IEEE Press, 2022:1-6. [9] SHEN H, BAI G W, HU Y J, et al.P2TA:privacy-preserving task allocation for edge computing enhanced mobile crowdsensing[J].Journal of Systems Architecture, 2019, 97:130-141. [10] QIAN Y F, JIANG Y Y, HOSSAIN M S, et al.Privacy-preserving based task allocation with mobile edge clouds[J].Information Sciences, 2020, 507:288-297. [11] ZHOU P, CHEN W B, JI S L, et al.Privacy-preserving online task allocation in edge-computing-enabled massive crowdsensing[J].IEEE Internet of Things Journal, 2019, 6(5):7773-7787. [12] WU D P, YANG Z G, YANG B R, et al.From centralized management to edge collaboration:a privacy-preserving task assignment framework for mobile crowdsensing[J].IEEE Internet of Things Journal, 2021, 8(6):4579-4589. [13] GANJAVI R, SHARAFAT A R.Edge-assisted public key homomorphic encryption for preserving privacy in mobile crowdsensing[EB/OL].[2022-06-05].https://ieeexplore.ieee.org/document/9767554/. [14] DING X Y, LÜ R Z, PANG X Y, et al.Privacy-preserving task allocation for edge computing-based mobile crowdsensing[J].Computers & Electrical Engineering, 2022, 97:107528. [15] 熊金波, 毕仁万, 田有亮, 等.移动群智感知安全与隐私:模型、进展与趋势[J].计算机学报, 2021, 44(9):1949-1966. XIONG J B, BI R W, TIAN Y L, et al.Security and privacy in mobile crowdsensing:models, progresses, and trends[J].Chinese Journal of Computers, 2021, 44(9):1949-1966.(in Chinese) [16] WU Y, LI F, MA L R, et al.A context-aware multi-armed bandit incentive mechanism for mobile crowd sensing systems[J].IEEE Internet of Things Journal, 2019, 6(5):7648-7658. [17] XIA Y B, ZHAO B W, TANG S H, et al.Repot:real-time and privacy-preserving online task assignment for mobile crowdsensing[J].Transactions on Emerging Telecommunications Technologies, 2021, 32(5):4035-4057. [18] 杨桂松, 吴笑天, 高丽, 等.面向单任务质量保障的移动群智感知任务分配[J].计算机工程, 2022, 48(9):45-54. YANG G S, WU X T, GAO L, et al.Task allocation towards individual task quality assurance in mobile crowd sensing[J].Computer Engineering, 2022, 48(9):45-54.(in Chinese) [19] 王汝言, 刘佳, 何鹏, 等.偏好感知的边云协同群智感知参与者选择策略[J].西安电子科技大学学报, 2022, 49(1):142-151. WANG R Y, LIU J, HE P, et al.Preference aware participant selection strategy for edge-cloud collaborative crowdsensing[J].Journal of Xidian University, 2022, 49(1):142-151.(in Chinese) [20] LIU Y, GUO B, WANG Y, et al.TaskMe:multi-task allocation in mobile crowd sensing[C]//Proceedings of 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.New York, USA:ACM Press, 2016:403-414. [21] 蒋伟进, 陈君鹏, 张婉清, 等.移动群智感知中基于任务质量的多任务分发参与者选择[J].控制与决策, 2022, 37(10):2667-2676. JIANG W J, CHEN J P, ZHANG W Q, et al.Multitask-oriented participant selection based on task quality in mobile crowd sensing[J].Control and Decision, 2022, 37(10):2667-2676.(in Chinese) [22] ASANZA V, ESTRADA R.Multi-task versus consecutive task allocation with tasks clustering[C]//Proceedings of the 12th International Conference on Emerging Ubiquitous Systems and Pervasive Networks.Washington D.C., USA:IEEE Press, 2021:67-76. [23] REN W, TONG X, DU J, et al.Privacy-preserving using homomorphic encryption in mobile IoT systems[J].Computer Communications, 2021, 165:105-111. [24] 田丰, 吴振强, 鲁来凤, 等.面向轨迹数据发布的个性化差分隐私保护机制[J].计算机学报, 2021, 44(4):709-723. TIAN F, WU Z Q, LU L F, et al.A sample based personalized differential privacy mechanism for trajectory data publication[J].Chinese Journal of Computers, 2021, 44(4):709-723.(in Chinese) [25] NALLAPERUMA S, WAGNER M, NEUMANN F, et al.A feature-based comparison of local search and the Christofides algorithm for the travelling salesperson problem[C]//Proceedings of the 12th Workshop on Foundations of Genetic Algorithms XII.New York, USA:ACM Press, 2013:147-160. [26] MA L C, LIU X F, PEI Q Q, et al.Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing[J].IEEE Transactions on Services Computing, 2019, 12(5):786-799. [27] JAMES M, MARIO N.Taxi routes of Mexico City, Quito and more[EB/OL].http://www.kaggle.com/datasets/mnavas/taxi-routes-for-mexico-city-and-quito. |