[1] 熊钢, 葛雨玮, 褚衍杰, 等.基于跨域协同的网络空间威胁预警模式[J].网络与信息安全学报, 2020, 6(6):88-96. XIONG G, GE Y W, CHU Y J, et al.Model of cyberspace threat earlywarningbased on cross-domain and collaboration[J].Chinese Journal of Network and Information Security, 2020, 6(6):88-96.(in Chinese) [2] YAHALOM R, STEREN A, NAMERI Y, et al.Improving the effectiveness of intrusion detection systems for hierarchical data[J].Knowledge-Based Systems, 2019, 168:59-69. [3] PAPAMARTZIVANOS D, GÓMEZ MÁRMOL F, KAMBOURAKIS G.Dendron:genetic trees driven rule induction for network intrusion detection systems[J].Future Generation Computer Systems, 2018, 79:558-574. [4] TSANGC H, KWONG S, WANG H L.Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection[J].Pattern Recognition, 2007, 40(9):2373-2391. [5] SALO F, NASSIF A B, ESSEX A.Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection[J].Computer Networks, 2019, 148:164-175. [6] TSAI C F, LIN C Y.A triangle area based nearest neighbors approach to intrusion detection[J].Pattern Recognition, 2010, 43(1):222-229. [7] LI Y, GUO L.An active learning based TCM-KNN algorithm for supervised network intrusion detection[J].Computers & Security, 2007, 26(7/8):459-467. [8] XIANG C, YONG P C, MENG L S.Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees[J].Pattern Recognition Letters, 2008, 29(7):918-924. [9] CHAN G Y, LEE C S, HENG S H.Policy-enhanced ANFIS model to counter SOAP-related attacks[J].Knowledge-Based Systems, 2012, 35:64-76. [10] AL-YASEEN W L, OTHMAN Z A, NAZRI M Z A.Real-time multi-agent system for an adaptive intrusion detection system[J].Pattern Recognition Letters, 2017, 85:56-64. [11] TAO P Y, SUN Z, SUN Z X.An improved intrusion detection algorithm based on GA and SVM[J].IEEE Access, 2018, 6:13624-13631. [12] ABUROMMAN A A, IBNE REAZ M B.A novel SVM-kNN-PSO ensemble method for intrusion detection system[J].Applied Soft Computing, 2016, 38:360-372. [13] ABUROMMAN A A, IBNE REAZ M B.A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems[J].Information Sciences, 2017, 414:225-246. [14] WANG C R, XU R F, LEE S J, et al.Network intrusion detection using equality constrained-optimization-based extreme learning machines[J].Knowledge-Based Systems, 2018, 147:68-80. [15] KU J H, ZHENG B, YUN D W.Intrusion detection based on self-adaptive differential evolutionary extreme learning machine[C]//Proceedings of 2017 International Conference on Computer Network, Electronic and Automation.Xi'an, China:[s.n.], 2017:94-100. [16] LIU X D, CHEN Y S, YANG J L.A novel fault diagnosis method for rolling bearing based on EEMD-PE and multiclass relevance vector machine[C]//Proceedings of 2017 IEEE International Instrumentation and Measurement Technology Conference.Washington D.C., USA:IEEE Press, 2017:1-6. [17] QIU X, TAN K C, XU J X.Multiple exponential recombination for differential evolution[J].IEEE Transactions on Cybernetics, 2017, 47(4):995-1006. [18] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2004:985-990. [19] HUANG G B, ZHOU H M, DING X J, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics:a Publication of the IEEE Systems, Man, and Cybernetics Society, 2012, 42(2):513-529. [20] SMITS G F, JORDAAN E M.Improved SVM regression using mixtures of kernels[C]//Proceedings of 2002 International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2002:2785-2790. [21] TIAN Z D, LI S J, WANG Y H, et al.Wind power prediction method based on hybrid kernel function support vector machine[J].Wind Engineering, 2018, 42(3):252-264. [22] 蒋鹏程, 汤占军, 刘萍兰.基于引力搜索算法的局部遮阴下光伏系统最大功率点跟踪算法研究[J].化工自动化及仪表, 2020, 47(3):226-230, 283. JIANG P C, TANG Z J, LIU P L.Simulation research of photovoltaic MPPT based on GSAalgorithm[J].Control and Instruments in Chemical Industry, 2020, 47(3):226-230, 283.(in Chinese) [23] 张涛, 朱瑞金, 扎西顿珠.基于改进骨干差分进化算法优化LSSVM的短期光伏发电功率预测[J].热力发电, 2021, 50(5):102-107. ZHANG T, ZHU R J, ZHAXIDUNZHU.Short-term photovoltaic power prediction based on IBBDE-LSSVM[J].Thermal Power Generation, 2021, 50(5):102-107.(in Chinese) [24] SEYEDMAHMOUDIAN M, RAHMANI R, MEKHILEF S, et al.Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method[J].IEEE Transactions on Sustainable Energy, 2015, 6(3):850-862. [25] 张泽龙, 钱勇, 刘华兵.基于主成分分析与遗传优化BP神经网络的风电场短期功率预测研究[J].宁夏电力, 2019(6):1-6, 34. ZHANG Z L, QIAN Y, LIU H B.Research on short-term power forecasting of wind farm based on principal component analysis and genetic optimization of BP neural network[J].Ningxia Electric Power, 2019(6):1-6, 34.(in Chinese) [26] 李丽敏, 程少康, 温宗周, 等.基于改进KPCA与混合核函数LSSVR的泥石流预测[J].信息与控制, 2019, 48(5):536-544. LI L M, CHENG S K, WEN Z Z, et al.A debris flow prediction model based on the improved KPCA and mixed kernel function LSSVR[J].Information and Control, 2019, 48(5):536-544.(in Chinese) [27] LEE W K, STOLFO S J.A framework for constructing features and models for intrusion detection systems[J].ACM Transactions on Information and System Security, 2000, 3(4):227-261. [28] ELKAN C.Results of the KDD'99 classifier learning[J].ACM SIGKDD Explorations Newsletter, 2000, 1(2):63-64. [29] FENG W Y, ZHANG Q L, HU G Z, et al.Mining network data for intrusion detection through combining SVMs with ant colony networks[J].Future Generation Computer Systems, 2014, 37:127-140. [30] KUANG F J, ZHANG S Y, JIN Z, et al.A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection[J].Soft Computing, 2015, 19(5):1187-1199. [31] 生龙, 马建飞, 杨瑞欣, 等.基于特征交换的CNN图像分类算法研究[J].计算机工程, 2020, 46(9):268-273. SHENG L, MA J F, YANG R X, et al.Research on CNN image classification algorithm based on feature exchange[J].Computer Engineering, 2020, 46(9):268-273.(in Chinese) |