[1] YANG J Y, SHI W, YUE H J, et al.Spatiotemporally scalable matrix recovery for background modeling and moving object detection[J].Signal Processing, 2020, 168:107362. [2] JU J G, XING J S.Moving object detection based on smoothing three frame difference method fused with RPCA[J].Multimedia Tools and Applications, 2019, 78(21):29937-29951. [3] YANG Z Z, FAN L, YANG Y P, et al.Generalized singular value thresholding operator based nonconvex low-rank and sparse decomposition for moving object detection[J].Journal of the Franklin Institute, 2019, 356(16):10138-10154. [4] CHEN Z, WANG R L, ZHANG Z, et al.Background-foreground interaction for moving object detection in dynamic scenes[J].Information Sciences, 2019, 483:65-81. [5] BOUWMANS T, ZAHZAH E H.Robust PCA via principal component pursuit:a review for a comparative evaluation in video surveillance[J].Computer Vision and Image Understanding, 2014, 122:22-34. [6] STAUFFER C, GRIMSON W E L.Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 1999:246-252. [7] TUZEL O, PORIKLI F, MEER P.A Bayesian approach to background modeling[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2005:1-8. [8] ZIVKOVIC Z, VAN DER HEIJDEN F.Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters, 2006, 27(7):773-780. [9] 邵奇可, 周宇, 李路, 等.复杂场景下自适应背景减除算法[J].中国图象图形学报, 2015, 20(6):756-763. SHAO Q K, ZHOU Y, LI L, et al.Adaptive background subtraction approach of Gaussian mixture model[J].Journal of Image and Graphics, 2015, 20(6):756-763.(in Chinese) [10] CAO X C, YANG L, GUO X J.Total variation regularized RPCA for irregularly moving object detection under dynamic background[J].IEEE Transactions on Cybernetics, 2016, 46(4):1014-1027. [11] EBADI S E, IZQUIERDO E.Foreground segmentation with tree-structured sparse RPCA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(9):2273-2280. [12] CHEN L X, LIU J L, WANG X W.Background subtraction with Kronecker-basis-representation based tensor sparsity and l1/1/2norm[J].Multidimensional Systems and Signal Processing, 2021, 32(1):77-90. [13] LI Y, LIU G C, LIU Q S, et al.Moving object detection via segmentation and saliency constrained RPCA[J].Neurocomputing, 2019, 323:352-362. [14] PANG Y W, YE L, LI X L, et al.Incremental learning with saliency map for moving object detection[J].IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3):640-651. [15] TOM A J, GEORGE S N.A three-way optimization technique for noise robust moving object detection using tensor low-rank approximation, l1/2, and TTV regularizations[J].IEEE Transactions on Cybernetics, 2021, 51(2):1004-1014. [16] CANDES E J, LI X, MA Y, et al.Robust principal component analysis?[J].Journal of the ACM, 2011, 58(3):11. [17] WANG Y, JODOIN P M, PORIKLI F, et al.CDnet 2014:an expanded change detection benchmark dataset[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2014:393-400. [18] XIE Q, ZHAO Q, MENG D Y, et al.Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8):1888-1902. [19] GOLDFARB D, QIN Z T.Robust low-rank tensor recovery:models and algorithms[J].SIAM Journal on Matrix Analysis and Applications, 2014, 35(1):225-253. [20] REZAEI B, OSTADABBAS S.Background subtraction via fast robust matrix completion[C]//Proceedings of IEEE International Conference on Computer Vision Workshops.Washington D.C., USA:IEEE Press, 2017:1871-1879. [21] LU C Y, FENG J S, CHEN Y D, et al.Tensor robust principal component analysis with a new tensor nuclear norm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4):925-938. [22] LIN Z, CHEN M, MA Y.The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J].Journal of Structural Biology, 2010, 181(2):116-127. |