王道累, 杜文斌, 刘易腾, 张天宇, 孙嘉珺, 李明山
遥感技术的快速发展使得遥感图像检测技术广泛应用于军事、农业、交通、城市规划等多个领域。随着遥感分辨率和数据体量的不断提升,通过人工处理数据的方法已经无法满足实时性需求,因此,实现高效、精准的自动化数据处理方式成为该领域的研究热点。针对遥感图像分辨率高、背景复杂、目标尺度小等特点,提出一种改进的YOLOv3算法,用以提升遥感图像的检测效果。在原始YOLOv3算法的基础上,使用改进的密集连接网络替换原有的DarkNet53作为基础网络,以提升网络输入和预测结果的尺度多样性。通过阀杆模块降低输入损失,同时在浅层特征图中加入特征增强模块,从而丰富特征图的感受野,强化网络对浅层特征信息的提取,在保证整体检测性能的同时使网络对遥感图像中、小目标的检测精度和鲁棒性均有所提升。在遥感图像数据集上进行多组对比实验,结果表明,相比原始YOLOv3算法,该算法的平均准确率提高9.45个百分点,在小尺度目标上的检测准确率提升更显著,达到11.03个百分点,且模型参数量得到有效缩减。