[1] RAJPURKAR P, ZHANG J, LOPYREV K, et al.SQuAD:100, 000+ questions for machine comprehension of text[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2016:2383-2392. [2] LAI G K, XIE Q Z, LIU H X, et al.RACE:large-scale ReAding comprehension dataset from examinationst[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2017:785-794. [3] DUA D, WAN Y Z, DASIGI P.et al.Drop:a reading comprehension benchmark requiring discrete reasoning over paragraphst[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:2368-2378. [4] CUI Y M, LIU T, CHE W X, et al.A span-extraction dataset for Chinese machine reading comprehension[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:5883-5889. [5] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2021-03-10].https://arxiv.org/abs/1810.04805. [6] 王元龙, 李茹, 张虎, 等.阅读理解中因果关系类选项的研究[J].清华大学学报(自然科学版), 2018, 58(3):272-278. WANG Y L, LI R, ZHANG H, et al.Causal options in Chinese reading comprehension[J].Journal of Tsinghua University (Science and Technology), 2018, 58(3):272-278.(in Chinese) [7] 郭少茹, 张虎, 钱揖丽, 等.面向高考阅读理解的句子语义相关度[J].清华大学学报(自然科学版), 2017, 57(6):575-579, 585. GUO S R, ZHANG H, QIAN Y L, et al.Semantic relevancy between sentences for Chinese reading comprehension on college entrance examinations[J].Journal of Tsinghua University (Science and Technology), 2017, 57(6):575-579, 585.(in Chinese) [8] 关勇, 吕国英, 李茹, 等.面向高考语文阅读理解的篇章标题选择研究[J].中文信息学报, 2018, 32(6):28-35, 43. GUAN Y, LÜ G Y, LI R, et al.Discourse title selection for Chinese reading comprehension of college entrance examination[J].Journal of Chinese Information Processing, 2018, 32(6):28-35, 43.(in Chinese) [9] 徐鹏飞, 李晓戈.基于深度学习的机器中文阅读理解研究[J].计算机与数字工程, 2019, 47(12):3126-3131. XU P F, LI X G.Study on machine Chinese reading comprehension based on deep learning[J].Computer & Digital Engineering, 2019, 47(12):3126-3131.(in Chinese) [10] 段利国, 高建颖, 李爱萍.机器阅读理解中观点型问题的求解策略研究[J].中文信息学报, 2019, 33(10):81-89. DUAN L G, GAO J Y, LI A P.Research on solving strategies of perspective-type problems in machine reading comprehension[J].Journal of Chinese Information Processing, 2019, 33(10):81-89.(in Chinese) [11] 张浩宇, 张鹏飞, 李真真, 等.基于自注意力机制的阅读理解模型[J].中文信息学报, 2018, 32(12):125-131. ZHANG H Y, ZHANG P F, LI Z Z, et al.Self-attention based machine reading comprehension[J].Journal of Chinese Information Processing, 2018, 32(12):125-131.(in Chinese) [12] LITKOWSKI K.CLR:integration of FrameNet in a text representation system[C]//Proceedings of the 4th International Workshop on Semantic Evaluations.Stroudsburg, USA:Association for Computational Linguistics, 2007:113-116. [13] LI R, LIU H J, LI S H.Chinese frame identification using T-CRF model[C]//Proceedings of International Conference on Computational Linguistics.Washington D.C., USA:IEEE Press, 2010:674-682. [14] GARCIA D.COATIS, an NLP system to locate expressions of actions connected by causality links[C]//Proceedings of International Conference on Knowledge Engineering and Knowledge Management.Berlin, Germany:Springer, 1997:347-352. [15] KHOO C S G, KORNFILT J, ODDY R N, et al.Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing[J].Literary and Linguistic Computing, 1998, 13(4):177-186. [16] HIDEY C, MCKEOWN K.Identifying causal relations using parallel wikipedia articles[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2016:1424-1433. [17] 冯冲, 康丽琪, 石戈, 等.融合对抗学习的因果关系抽取[J].自动化学报, 2018, 44(5):811-818. FENG C, KANG L Q, SHI G, et al.Causality extraction with GAN[J].Acta Automatica Sinica, 2018, 44(5):811-818.(in Chinese) [18] DASGUPTA T, SAHA R, DEY L, et al.Automatic extraction of causal relations from text using linguistically informed deep neural networks[C]//Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue.Stroudsburg, USA:Association for Computational Linguistics, 2018:306-316. [19] QIU J N, XU L W, ZHAI J, et al.Extracting causal relations from emergency cases based on conditional random fields[J].Procedia Computer Science, 2017, 112:1623-1632. [20] 许晶航, 左万利, 梁世宁, 等.基于图注意力网络的因果关系抽取[J].计算机研究与发展, 2020, 57(1):159-174. XU J H, ZUO W L, LIANG S N, et al.Causal relation extraction based on graph attention networks[J].Journal of Computer Research and Development, 2020, 57(1):159-174.(in Chinese) [21] 沙雨辰.常识性因果知识库构建[D].上海:上海交通大学, 2018. SHA Y C.Construction of commonsense causal knowledge base[D].Shanghai:Shanghai Jiao Tong University, 2018.(in Chinese) [22] MILLER G A.WordNet[J].Communications of the ACM, 1995, 38(11):39-41. |