[1] ADAMS T.Google and the future of search:amit singhal and the knowledge graph[EB/OL].[2021-04-10].https://www.mendeley.com/catalogue/a2ceb8b0-2e58-31cb-ae6a-09f3e89a8b88/. [2] HE H, BALAKRISHNAN A, ERIC M, et al.Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings[EB/OL].[2021-04-10].https://arxiv.org/abs/1704.07130. [3] BORDES A, WESTON J, USUNIER N.Open question answering with weakly supervised embedding models[M]//CALDERS T, ESPOSITO F, HÜLLERMEIER E, et al.Machine learning and knowledge discovery in databases.Berlin, Germany:Springer, 2014:165-180. [4] 陶天一, 王清钦, 付聿炜, 等.基于知识图谱的金融新闻个性化推荐算法[J].计算机工程, 2021, 47(6):98-103, 114. TAO T Y, WANG Q Q, FU Y W, et al.Personalized recommendation algorithm for financial news based on knowledge graph[J].Computer Engineering, 2021, 47(6):98-103, 114.(in Chinese) [5] BOLLACKER K, EVANS C, PARITOSH P, et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2008:1247-1250. [6] LUONG T, SOCHER R, MANNING C D.Better word representations with recursive neural networks for morphology[2021-04-10].https://www.researchgate.net/publication/270878536_Better_Word_Representations_with_Recursive_Neural_Networks_for_Morphology. [7] REISINGER J, MOONEY R.Multi-prototype vector-space models of word meaning[C]//Proceedings of 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2010:109-117. [8] SPEER R, CHIN J, HAVASI C.ConceptNet 5.5:an open multilingual graph of general knowledge[EB/OL].[2021-04-10].https://arxiv.org/pdf/1612.03975.pdf. [9] HAO J H, CHEN M H, YU W C, et al.Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts[EB/OL].[2021-04-10].https://arxiv.org/abs/2103.08115. [10] BORDES A, USUNIER N, GARCIA-DURAN A, et al.Translating embeddings for modeling multi-relational data[M]//GLEN D T, SUZANNA B, ZOUBIN G.Advances in neural information processing systems.Berlin, Germany:Springer, 2013:2787-2795. [11] WANG Z, ZHANG J W, FENG J L, et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2014:1112-1119. [12] LIN Y K, LIU Z Y, SUN M S, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2015:2181-2187. [13] JI G, HE S, XU L, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers).[S.l.]:Association for Computational Linguistics, 2015:687-696. [14] JI G, LIU K, HE S, et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:1-10. [15] HE S Z, LIU K, JI G L, et al.Learning to represent knowledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York, USA:ACM Press, 2015:623-632. [16] YANG B S, YIH W T, HE X D, et al.Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2021-04-10].https://arxiv.org/abs/1412.6575. [17] TROUILLON T, NICKEL M.Complex and holographic embeddings of knowledge graphs:a comparison[EB/OL].[2021-04-10].https://arxiv.org/abs/1707.01475. [18] CHEN M H, TIAN Y T, CHEN X L, et al.On2Vec:embedding-based relation prediction for ontology population[EB/OL].[2021-04-10].https://arxiv.org/abs/1809.02382. [19] LÜ X, HOU L, LI J Z, et al.Differentiating concepts and instances for knowledge graph embedding[EB/OL].[2021-04-10].https://arxiv.org/abs/1811.04588. [20] KROMPA D, BAIER S, TRESP V.Type-constrained representation learning in knowledge graphs[C]//Proceedings of SWC'15.Berlin, Gerany:Springer, 2015:640-655. [21] SHU G, QUAN W, WANG B, et al.Semantically Smooth knowledge graph embedding[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers).[S.l.]:Association for Computational Linguistics, 2015:1-10. [22] FORSYTH D.Representation learning[J].Computer, 2015, 48(4):6. [23] 张晓明, 孙维雅, 王会勇.基于知识表示学习的知识可信度评估[J].计算机工程, 2021, 47(7):44-54. ZHANG X M, SUN W Y, WANG H Y.Evaluation of knowledge credibility based on knowledge representation learning[J].Computer Engineering, 2021, 47(7):44-54.(in Chinese) [24] BORDES A, WESTON J, COLLOBERT R, et al.Learning structured embeddings of knowledge bases[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2011:301-306. |