[1] GROVER L K.A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th Annual ACM Symposium on Theory of Computing.New York, USA:ACM Press, 1996:212-219. [2] BABBUSH R, MCCLEAN J, WECKER D, et al.Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation[J].Physical Review A, 2015, 91(2):1-18. [3] BAUER B, WECKER D, MILLIS A J, et al.Hybrid quantum-classical approach to correlated materials[J].Physical Review X, 2016, 6(3):1-11. [4] BIAMONTE J, WITTEK P, PANCOTTI N, et al.Quantum machine learning[J].Nature, 2017, 549(7671):195-202. [5] DOU X L, LIU L.A new qubits mapping mechanism for multi-programming quantum computing[C]//Proceedings of International Conference on Parallel Architectures and Compilation Techniques.New York, USA:ACM Press, 2020:349-350. [6] LIU L, DOU X L.QuCloud:a new qubit mapping mechanism for multi-programming quantum computing in cloud environment[C]//Proceedings of International Symposium on High Performance Computer Architecture.Washington D.C., USA:IEEE Press, 2021:167-178. [7] PRESKILL J.Quantum computing in the NISQ era and beyond[J].Quantum, 2018, 2:79. [8] LI G S, DING Y, XIE Y.Tackling the qubit mapping problem for NISQ-era quantum devices[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems.New York, USA:ACM Press, 2019:1001-1014. [9] ARUTE F, ARYA K, BABBUSH R, et al.Quantum supremacy using a programmable superconducting processor[J].Nature, 2019, 574(7779):505-510. [10] HUANG C J, ZHANG F, NEWMAN M, et al.Classical simulation of quantum supremacy circuits[EB/OL].(2020-05-14)[2021-03-10].https://arxiv.org/pdf/2005.06787v1.pdf. [11] CHEN Z Y, ZHOU Q, XUE C, et al.64-qubit quantum circuit simulation[J].Science Bulletin, 2018, 63(15):964-971. [12] ATAIDES J P B, TUCKETT D K, BARTLETT S D, et al.The XZZX surface code[J].Nature Communications, 2021, 12(1):1-12. [13] ALMUDEVER C G, LAO L, FU X, et al.The engineering challenges in quantum computing[C]//Proceedings of DATE Conference.Washington D.C., USA:IEEE Press, 2017:836-845. [14] 孙晓明.量子计算若干前沿问题综述[J].中国科学:信息科学, 2016, 46(8):982-1002. SUN X M.A survey on quantum computing[J].SCIENTIA SINICA Informationis, 2016, 46(8):982-1002.(in Chinese) [15] 范桁.量子计算与量子模拟[J].物理学报, 2019, 67(12):1-10. FAN H.Quantum computation and quantum simulation[J].Acta Physicas Sinica, 2019, 67(12):1-10.(in Chinese) [16] STEIGER D S, HANER T, TROYER M.ProjectQ:an open source software framework for quantum computing[J].Quantum, 2018, 2:49. [17] SMELYANSKIY M, SAWAYA N P D, ASPURU G A.qHiPSTER:the quantum high performance software testing environment[EB/OL].(2016-05-12)[2021-03-10].https://www.researchgate.net/profile/Nicolas-Sawaya/publication/301856456_qHiPSTER_The_Quantum_High_Performance_Software_Testing_Environment/links/5834993808aef19cb81f8d85/qHiPSTER-The-Quantum-High-Performance-Software-Testing-Environment.pdf. [18] JONES T, BROWN A, BUSH I, et al.QuEST and high performance simulation of quantum computers[J].Scientific Reports, 2019, 9(1):1-11. [19] NIELSEN M A, CHUANG I.Quantum computation and quantum information[M].Cambridge, UK:Cambridge University Press, 2002. [20] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al.Characterizing quantum supremacy in near-term devices[J].Nature Physics, 2018, 14(6):595-600. [21] BREMNER M J, JOZSA R, SHEPHERD D J.Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2011, 467(2126):459-472. [22] AARONSON S, ARKHIPOV A.The computational complexity of linear optics[C]//Proceedings of the 43rd Annual ACM Symposium on Theory of Computing.New York, USA:ACM Press, 2011:333-342. [23] WU B J, CHENG B, JIA F, et al.Speedup in classical simulation of Gaussian Boson sampling[J].Science Bulletin, 2020, 65(10):832-841. [24] BOULAND A, FEFFERMAN B, NIRKHE C, et al.On the complexity and verification of quantum random circuit sampling[J].Nature Physics, 2019, 15(2):159-163. [25] ZLOKAPA A, BOIXO S, LIDAR D.Boundaries of quantum supremacy via random circuit sampling[EB/OL].(2020-05-05)[2021-03-10].http://arxiv.org/pdf/2005.02464.pdf. [26] CORRIGAN G H, WU D J, BONEH D.Quantum operating systems[C]//Proceedings of the 16th Workshop on Hot Topics in Operating Systems.New York, USA:ACM Press, 2017:76-81. [27] AARONSON S, CHEN L J.Complexity-theoretic foundations of quantum supremacy experiments[C]//Proceedings of the 32nd Computational Complexity Conference.New York, USA:ACM Press, 2017:1-67. [28] FEYNMAN R P.Simulating physics with computers[J].International Journal of Theoretical Physics, 1982, 21:467-488. [29] WU X C, DI S, DASGUPTA E M, et al.Full-state quantum circuit simulation by using data compression[C]//Proceedings of 2019 International Conference for High Performance Computing, Networking, Storage and Analysis.Washington D.C., USA:IEEE Press, 2019:1-24. [30] RAEDT H, JIN F, WILLSCH D, et al.Massively parallel quantum computer simulator, eleven years later[J].Computer Physics Communications, 2019, 237:47-61. [31] MCCASKEY A, DUMITRESCU E, CHEN M, et al.Validating quantum-classical programming models with tensor network simulations[J].PLoS One, 2018, 13(12):1-10. [32] GUO C, ZHAO Y W, HUANG H L.Verifying random quantum circuits with arbitrary geometry using tensor network states algorithm[J].Physical Review Letters, 2021, 126(7):1-9. [33] PEDNAULT E, GUNNELS J A, NANNICINI G, et al.Pareto-efficient quantum circuit simulation using tensor contraction deferral[EB/OL].(2017-10-16)[2021-03-10].https://arxiv.org/pdf/1710.05867v4.pdf. [34] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al.Simulation of low-depth quantum circuits as complex undirected graphical models[EB/OL].(2017-12-14)[2021-03-10].https://arxiv.org/pdf/1712.05384.pdf. [35] CHEN J X, ZHANG F, HUANG C P, et al.Classical simulation of intermediate-size quantum circuits[EB/OL].(2018-05-03)[2021-03-10].https://arxiv.org/pdf/1805. 01450v2.pdf. [36] PAN F, ZHANG P.Simulating the Sycamore quantum supremacy circuits[EB/OL].(2021-03-04)[2021-03-10].https://arxiv.org/pdf/2103.03074v1.pdf. [37] WU X Y, XU Y L, YU Y F, et al.Fault-tolerantly implementing dense rotation operations based on non-stabilizer states[J].Acta Physica Sinica, 2014, 63(22):1-7. [38] PROCTOR T J, CARIGNAN D A, RUDINGER K, et al.Direct randomized benchmarking for multiqubit devices[J].Physical Review Letters, 2019, 123(3):1-10. [39] BLUME K R, GAMBLE J K, NIELSEN E, et al.Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography[J].Nature Communications, 2017, 8(1):1-13. [40] WANG Z, CHEN Y, SONG Z, et al.Scalable evaluation of quantum-circuit error loss using Clifford sampling[J].Physical Review Letters, 2021, 126(8):1-10. [41] AARONSON S, GOTTESMAN D.Improved simulation of stabilizer circuits[J].Physical Review A, 2004, 70(5):1-8. [42] BRAVYI S, GOSSET D.Improved classical simulation of quantum circuits dominated by Clifford gates[J].Physical Review Letters, 2016, 116(25):1-10. [43] BU K, KOH D E.Efficient classical simulation of Clifford circuits with nonstabilizer input states[J].Physical Review Letters, 2019, 123(17):1-9. [44] HE X Y, GUAN Z J, DING F.The mapping and optimization method of quantum circuits for Clifford+T gate[J].Journal of Applied Mathematics and Physics, 2019, 7(11):2796-2810. [45] GAO X, DUAN L M.Efficient classical simulation of noisy quantum computation[EB/OL].(2018-10-07)[2021-03-10].https://arxiv.org/pdf/1810.03176.pdf. [46] CHEN Y T, COLLIN F, ROBERT M P.Low-rank density-matrix evolution for noisy quantum circuits[J].npj Quantum Information, 2021, 7(1):1-12. [47] CROSS A.The IBM Q experience and QISKit open-source quantum computing software[C]//Proceedings of 2018 APS March Meeting.Los Angeles, USA:American Physical Society, 2018:1-10. [48] WILLE R, METER R, NAVEH Y.IBM's Qiskit tool chain:working with and developing for real quantum computers[C]//Proceedings of 2019 Design, Automation & Test in Europe Conference & Exhibition.Washington D.C., USA:IEEE Press, 2019:1234-1240. [49] SICILIA M A, SANCHEZ A S, MORA C M, et al.On the source code structure of quantum code:insights from Q# and QDK[C]//Proceedings of International Conference on the Quality of Information and Communications Technology.Berlin, Germany:Springer, 2020:292-299. [50] HUAWEI.QC research[EB/OL].[2021-03-10].https://hiq.huaweicloud.com/en. [51] GOOGLE.Cirq[EB/OL].[2021-03-10].https://quantumai.google/cirq. [52] ORIGIN QUANTUM.QPanda[EB/OL].[2021-03-10].http://www.originqc.com.cn/QPanda/download.html. [53] GUERRESCHI G G, HOGABOAM J, BARUFFA F, et al.Intel quantum simulator:a cloud-ready high-performance simulator of quantum circuits[J].Quantum Science and Technology, 2020, 5(3):1-10. [54] BAIDU.量桨:量子机器学习工具集[EB/OL].[2021-03-10].https://qml.baidu.com. [55] MARKOV I L, SHI Y Y.Simulating quantum computation by contracting tensor networks[J].SIAM Journal on Computing, 2008, 38(3):963-981. [56] TANG W, TOMESH T, SUCHARA M, et al.CutQC:using small quantum computers for large quantum circuit evaluations[C]//Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems.New York, USA:ACM Press, 2021:473-486. [57] LI R L, WU B J, YING M S, et al.Quantum supremacy circuit simulation on Sunway TaihuLight[J].IEEE Transactions on Parallel and Distributed Systems, 2019, 31(4):805-816. [58] TABAKIN F, BRUNO J D.QCMPI:a parallel environment for quantum computing[J].Computer Physics Communications, 2009, 180(6):948-964. [59] ZHANG P, YUAN J B, LU X W.Quantum computer simulation on multi-GPU incorporating data locality[C]//Proceedings of International Conference on Algorithms and Architectures for Parallel Processing.Berlin, Germany:Springer, 2015:241-256. |