[1] GONG Y C, LUO H, ZHANG J.Natural language inference over interaction space[EB/OL].[2021-06-10].https://www.researchgate.net/publication/319700831_Natural_Language_Inference_over_Interaction_Space. [2] LIU X, CHEN Q C, CHONG D, et al.LCQMC:a large-scale Chinese question matching corpus[C]//Proceedings of the 27th International Conference on Computational Linguistics.Washington D.C., USA:IEEE Press, 2018:1952-1962. [3] LAN W W, XU W.Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering[EB/OL].[2021-06-10].https://arxiv.org/abs/1806.04330. [4] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2021-06-10].https://arxiv.org/abs/1301.3781. [5] PENNINGTON J, SOCHER R, MANNING C.Glove:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2014:1532-1534. [6] HE T, HUANG W L, QIAO Y, et al.Text-attentional convolutional neural network for scene text detection[J].IEEE Transactions on Image Processing, 2016, 25(6):2529-2541. [7] MUELLER J, THYAGARAJAN A.Siamese recurrent architectures for learning sentence similarity[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2016:2786-2792. [8] WANG Z G, HAMZA W, FLORIAN R.Bilateral multi-perspective matching for natural language sentences[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne, Australia:International Joint Conferences on Artificial Intelligence Organization, 2017:4144-4150. [9] CHEN Q, ZHU X D, LING Z H, et al.Enhanced LSTM for natural language inference[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:1657-1668. [10] LI X Y, MENG Y X, SUN X F, et al.Is word segmentation necessary for deep learning of Chinese representations?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:3242-3252. [11] ZHANG Y, WANG Y L, YANG J.Lattice LSTM for Chinese sentence representation[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28:1506-1519. [12] ZHANG Y, YANG J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:1554-1564. [13] LIU W, XU T G, XU Q H, et al.An encoding strategy based word-character[C]//Proceedings of the 2019 Conference of the North.Stroudsburg, USA:Association for Computational Linguistics, 2019:2379-2389. [14] 崔丹丹, 刘秀磊, 陈若愚, 等.基于Lattice LSTM的古汉语命名实体识别[J].计算机科学, 2020, 47(S2):18-22. CUI D D, LIU X L, CHEN R Y, et al.Named entity recognition in field of ancient Chinese based on lattice LSTM[J].Computer Science, 2020, 47(S2):18-22.(in Chinese) [15] 赵耀全, 车超, 张强.基于新词发现和Lattice-LSTM的中文医疗命名实体识别[J].计算机应用与软件, 2021, 38(1):161-165, 249. ZHAO Y Q, CHE C, ZHANG Q.Chinese medical named entity recognition based on new word discovery and lattice-LSTM[J].Computer Applications and Software, 2021, 38(1):161-165, 249.(in Chinese) [16] SU J S, TAN Z X, XIONG D Y, et al.Lattice-based recurrent neural network encoders for neural machine translation[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2017:3302-3308. [17] 张文静, 张惠蒙, 杨麟儿, 等.基于Lattice-LSTM的多粒度中文分词[J].中文信息学报, 2019, 33(1):18-24. ZHANG W J, ZHANG H M, YANG L E, et al.Multi-grained Chinese word segmentation with Lattice-LSTM[J].Journal of Chinese Information Processing, 2019, 33(1):18-24.(in Chinese) [18] LI Z R, DING N, LIU Z Y, et al.Chinese relation extraction with multi-grained information and external linguistic knowledge[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:4377-4386. [19] LAI Y X, FENG Y S, YU X H, et al.Lattice CNNs for matching based Chinese question answering[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2019:6634-6641. [20] CHEN L, ZHAO Y B, LYU B E, et al.Neural graph matching networks for Chinese short text matching[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online.Stroudsburg, USA:Association for Computational Linguistics, 2020:6152-6158. [21] DONG Z D, DONG Q.HowNet:a hybrid language and knowledge resource[C]//Proceedings of International Conference on Natural Language Processing and Knowledge Engineering.Washington D.C., USA:IEEE Press, 2003:820-824. [22] NIU Y L, XIE R B, LIU Z Y, et al.Improved word representation learning with sememes[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:2049-2058. |