[1] 黄立威, 江碧涛, 吕守业, 等.基于深度学习的推荐系统研究综述[J].计算机学报, 2018, 41(7):1619-1647. HUANG L W, JIANG B T, LÜS Y, et al.Survey on deep learning based recommender systems[J].Chinese Journal of Computers, 2018, 41(7):1619-1647.(in Chinese) [2] 刘军, 杨军, 宋姗姗.基于用户购买意愿力的协同过滤推荐算法[J].吉林大学学报(理学版), 2021, 59(6):1432-1438. LIU J, YANG J, SONG S S.Collaborative filtering recommendation algorithm based on purchasing intention of users[J].Journal of Jilin University (Science Edition), 2021, 59(6):1432-1438.(in Chinese) [3] 徐冰冰, 岑科廷, 黄俊杰, 等.图卷积神经网络综述[J].计算机学报, 2020, 43(5):755-780. XU B B, CEN K T, HUANG J J, et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers, 2020, 43(5):755-780.(in Chinese) [4] ZHOU J, CUI G Q, HU S D, et al.Graph neural networks:a review of methods and applications[J].AI Open, 2020, 1:57-81. [5] WU S W, ZHANG W T, SUN F, et al.Graph neural networks in recommender systems:a survey[EB/OL].[2021-07-01].https://arxiv.org/abs/2011.02260. [6] WANG X, HE X N, WANG M, et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:165-174. [7] HE X N, DENG K, WANG X, et al.LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:639-648. [8] CHEN L, WU L, HONG R C, et al.Revisiting graph based collaborative filtering:a linear residual graph convolutional network approach[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1):27-34. [9] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2021-07-01].https://arxiv.org/abs/1609.02907. [10] LI Q M, HAN Z C, WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[EB/OL].[2021-07-01].https://arxiv.org/abs/1801.07606. [11] HUANG W B, RONG Y, XU T Y, et al.Tackling over-smoothing for general graph convolutional networks[EB/OL].[2021-07-01].https://arxiv.org/abs/2008.09864. [12] HECHTLINGER Y, CHAKRAVARTI P, QIN J.A generalization of convolutional neural networks to graph-structured data[EB/OL].[2021-07-01].https://arxiv.org/abs/1704.08165. [13] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al.An algorithmic framework for performing collaborative filtering[J].ACM SIGIR Forum, 2017, 51(2):227-234. [14] SARWAR B, KARYPIS G, KONSTAN J, et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web.New York, USA:ACM Press, 2001:285-295. [15] KOREN Y, BELL R, VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer, 2009, 42(8):30-37. [16] RENDLE S, FREUDENTHALER C, GANTNER Z, et al.BPR:Bayesian personalized ranking from implicit feedback[EB/OL].[2021-07-01].https://arxiv.org/abs/1205.2618. [17] 贾俊杰, 刘鹏涛, 陈旺虎.融合社交信息的矩阵分解改进推荐算法[J].计算机工程, 2021, 47(9):97-105. JIA J J, LIU P T, CHEN W H.Improved matrix factorization algorithm using social information for recommendation[J].Computer Engineering, 2021, 47(9):97-105.(in Chinese) [18] HE X N, LIAO L Z, ZHANG H W, et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.New York, USA:ACM Press, 2017:173-182. [19] HE X N, HE Z K, SONG J K, et al.NAIS:neural attentive item similarity model for recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12):2354-2366. [20] BERG R, KIPF T N, WELLING M.Graph convolutional matrix completion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2018:1-9. [21] JI S Y, FENG Y F, JI R R, et al.Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2020:2020-2029. [22] FENG Y F, YOU H X, ZHANG Z Z, et al.Hypergraph neural networks[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:3558-3565. [23] JIANG J, WEI Y, FENG Y, et al.Dynamic hypergraph neural networks[EB/OL].[2021-07-01].https://www.ijcai.org/Proceedings/2019/0366.pdf. [24] XUE H J, DAI X, ZHANG J, et al.Deep matrix factorization models for recommender systems[EB/OL].[2021-07-01].https://www.ijcai.org/Proceedings/2017/0447.pdf. [25] WANG X, WANG R J, SHI C, et al.Multi-component graph convolutional collaborative filtering[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4):6267-6274. [26] 康雁, 李涛, 李浩, 等.融合知识图谱与协同过滤的推荐模型[J].计算机工程, 2020, 46(12):73-79, 87. KANG Y, LI T, LI H, et al.Recommendation model fusing with knowledge graph and collaborative filtering[J].Computer Engineering, 2020, 46(12):73-79, 87.(in Chinese) |