作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (8): 121-128. doi: 10.19678/j.issn.1000-3428.0062453

• 人工智能与模式识别 • 上一篇    下一篇

双通道图协同过滤推荐算法

苗雨欣, 宋春花, 牛保宁, 康瑞雪   

  1. 太原理工大学 信息与计算机学院, 太原 030000
  • 收稿日期:2021-08-23 修回日期:2021-10-14 发布日期:2021-10-18
  • 作者简介:苗雨欣(1996-),男,硕士研究生,主研方向为推荐系统、图卷积网络;宋春花,副教授、博士;牛保宁,教授、博士;康瑞雪,硕士研究生。
  • 基金资助:
    国家自然科学基金面上项目(62072326);山西省重点研发计划项目(201903D421007)。

Dual-Channel Graph Collaborative Filtering Recommendation Algorithm

MIAO Yuxin, SONG Chunhua, NIU Baoning, KANG Ruixue   

  1. College of Information and Computer, Taiyuan University of Technology, Taiyuan 030000, China
  • Received:2021-08-23 Revised:2021-10-14 Published:2021-10-18

摘要: 协同过滤是一种应用广泛的推荐算法,其核心过程是学习用户和商品的向量表示。基于图卷积网络(GCN)的协同过滤算法在向量嵌入过程中加入邻居节点的关联信息,进一步提升了算法的推荐性能。然而,图协同过滤算法中存在过平滑现象,且其仅采用邻接矩阵在局部结构中扩展,没有从图的整体结构出发挖掘节点间潜在的交互模式,使得交互信息来源单一。提出一种基于GCN的双通道协同过滤推荐算法DCCF。将向量嵌入过程划分为局部卷积通道和全局卷积通道,以获取不同类型的连接信息。在局部卷积通道中,直接定位邻域节点并使用单层网络结构完成计算,优化信息的聚合方式以应对过平滑问题。在全局卷积通道中,通过聚类的方式构造全局交互图并参与信息的聚合过程,从而挖掘节点间的潜在联系。将局部信息与全局信息相结合,以获得包含不同类型高阶关系的节点向量表示。在3个公开数据集上进行对比实验,结果表明,相较基准算法中性能表现最优的模型,DCCF在归一化折损累计增益和召回率这2个指标上最高分别提升2.8%和5.0%。

关键词: 推荐算法, 深度学习, 协同过滤, 图卷积网络, 向量嵌入

Abstract: Collaborative filtering is a widely used recommendation algorithm whose core process is to learn the vector representation of users and goods.The Graph Convolution Network(GCN)-based collaborative filtering algorithm adds the correlation information of neighbor nodes in the vector embedding process, which further improves the algorithm's recommendation performance.However, the graph collaborative filtering algorithm tends to over smooth and only uses the adjacency matrix to expand the local structure.Furthermore, it does not mine the potential interaction patterns between nodes from the overall graph structure, making the interaction information source single.To overcome these limitations, a GCN-based Dual-Channel Collaborative Filtering Recommendation(DCCF) algorithm is proposed in this study.In the proposed algorithm, the vector embedding process is divided into local and global convolution channels to obtain different types of connection information.In the local convolution channel, the neighborhood nodes are directly located and a single-layer network structure is used to complete the calculation.Additionally, information aggregation is optimized to address the over smoothing problem.In the global convolution channel, the global interaction graph is constructed via clustering and participates in the information aggregation process, so as to mine the potential connections between nodes.Local and global information are combined to obtain a node vector representation containing different types of high-order relationships.Comparative experiments are conducted on three public datasets and the results show that the DCCF algorithm has a maximum increase of 2.8% and 5.0% in two indicators, namely, the normalized impairment cumulative gain and recall, respectively, compared with the best-performing model in the benchmark algorithm.

Key words: recommendation algorithm, deep learning, collaborative filtering, Graph Convolutional Network(GCN), vector embedding

中图分类号: