[1] 吴育锋.统计独立性的离散化新方法[J].计算机应用与软件, 2012, 29(4):249-252. WU Y F.A novel discretization method for statistical independence[J].Computer Applications and Software, 2012, 29(4):249-252.(in Chinese) [2] ZHANG H, ZHOU S G, YAN C X, et al.Recursively learning causal structures using regression-based conditional independence test[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:3108-3115. [3] 郑巧夺, 吴贞东, 邹俊颖.基于双层CNN-BiGRU-CRF的事件因果关系抽取[J].计算机工程, 2021, 47(5):58-64, 72. ZHENG Q D, WU Z D, ZOU J Y.Event causality extraction based on two-layer CNN-BiGRU-CRF[J].Computer Engineering, 2021, 47(5):58-64, 72.(in Chinese) [4] SPIRTES P, GLYMOUR C, SCHEINES R.Causation, prediction, and search, second edition[M].Cambridge, USA:MIT Press, 2000. [5] 张浩, 郝志峰, 蔡瑞初, 等.基于互信息的适用于高维数据的因果推断算法[J].计算机应用研究, 2015, 32(2):382-385. ZHANG H, HAO Z F, CAI R C, et al.High dimensional causality discovering based on mutual information[J].Application Research of Computers, 2015, 32(2):382-385.(in Chinese) [6] SU L J, WHITE H.A nonparametric hellinger metric test for conditional independence[J].Econometric Theory, 2008, 24(4):829-864. [7] GRETTON A, BORGWARDT K M, RASCH M, et al.A kernel method for the two-sample-problem[M]//SCHÖLKOPF B, PLATT J, HOFMANN T.Advances in neural information processing systems 19:proceedings of the 2006 conference.Cambridge, USA:MIT Press, 2008:513-520. [8] FUKUMIZU K, GRETTON A, SUN X H, et al.Kernel measures of conditional dependence[J].Advances in Neural Information Processing Systems, 2007, 20(1):167-204. [9] SRIPERUMBUDUR B K, FUKUMIZU K, LANCKRIET G R G.Universality, characteristic kernels and RKHS embedding of measures[J].Journal of Machine Learning Research, 2011, 12(Jul):2389-2410. [10] FUKUMIZU K, GRETTON A, SCHOLKOPF B, et al.Characteristic kernels on groups and semigroups[C]//Proceedings of the 23rd Annual Conference on Neural Information Processing Systems.Cambridge, USA:MIT Press, 2009:473-480. [11] SRIPERUMBUDUR B, FUKUMIZU K, LANCKRIET G.On the relation between universality, characteristic kernels and RKHS embedding of measures[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.Cambridge, USA:MIT Press, 2010:773-780. [12] ZHANG K, PETERS J, JANZING D, et al.Kernel-based conditional independence test and application in causal discovery[C]//Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence.Barcelona, Spain:AUAI Press, 2011:804-813. [13] ZHANG H, YAN C X, ZHOU S G, et al.Combined cause inference:definition, model and performance[J].Information Sciences, 2021, 574:431-443. [14] ZHANG H, ZHOU S G, ZHANG K, et al.Causal discovery using regression-based conditional independence tests[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:1250-1256. [15] ZHANG H, ZHOU S G, YAN C X, et al.Recursively learning causal structures using regression-based conditional independence test[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:3108-3115. [16] ZHANG H, ZHOU S G, GUAN J H, et al.Measuring conditional independence by independent residuals for causal discovery[J].ACM Transactions on Intelligent Systems and Technology, 2019, 10(5):50-69. [17] ZHANG H, ZHOU S, GUAN J.Testing independence between linear combinations for causal discovery[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2021:6538-6546. [18] ZHANG H, ZHOU S G, GUAN J H.Measuring conditional independence by independent residuals:theoretical results and application in causal discovery[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:2029-2036. [19] DAUDIN J J.Partial association measures and an application to qualitative regression[J].Biometrika, 1980, 67(3):581-590. [20] FLAXMAN S R, NEILL D B, SMOLA A J.Gaussian processes for independence tests with non-iid data in causal inference[J].ACM Transactions on Intelligent Systems and Technology, 2016, 7(2):22. [21] ZHANG H, ZHOU S, YAN C, et al.Learning causal structures based on divide and conquer[J].IEEE Transactions on Cybernetics, 2022, 52(5):3232-3243. [22] CAI R C, ZHANG Z J, HAO Z F.SADA:a general framework to support robust causation discovery[C]//Proceedings of the 30th International Conference on Machine Learning.New York, USA:ACM Press, 2013:208-216. [23] CAI R C, ZHANG Z J, HAO Z.SADA:A general framework to support robust Causation discovery with theoretical guarantee[DB/OL].(2017-07-05)[2021-06-10].https://arxiv.org/abs/1707.01283. |