1 |
MOHAMMED H, IBRAHIM R, SALMAN K, et al. Learning discriminative representations for multi-label image recognition[EB/OL]. [2022-08-15]. https://arxiv.org/abs/2107.11159.
|
2 |
JI W T, WANG R L. A multi-instance multi-label dual learning approach for video captioning. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17 (2s): 1- 18.
doi: 10.1145/3446792
|
3 |
CHU Y Y, SHAN X Q, CHEN T H, et al. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Briefings in Bioinformatics, 2021, 22 (3): 205.
doi: 10.1093/bib/bbaa205
|
4 |
WANG W, DAI Q Y, LI F, et al. MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Briefings in Bioinformatics, 2021, 22 (3): 104.
doi: 10.1093/bib/bbaa104
|
5 |
HAO X Y, HUANG J, QIN F, et al. Multi-label learning with missing features and labels and its application to text categorization. Intelligent Systems with Applications, 2022, 14, 200086.
doi: 10.1016/j.iswa.2022.200086
|
6 |
LIU H T, CHEN G, LI P P, et al. Multi-label text classification via joint learning from label embedding and label correlation. Neurocomputing, 2021, 460, 385- 398.
doi: 10.1016/j.neucom.2021.07.031
|
7 |
SONG D Z, VOLD A, MADAN K, et al. Multi-label legal document classification: a deep learning-based approach with label-attention and domain-specific pre-training. Information Systems, 2022, 106, 1- 10.
doi: 10.1016/j.is.2021.101718
|
8 |
TSOUMAKAS G, KATAKIS I. Multi-label classification. International Journal of Data Warehousing and Mining, 2007, 3 (3): 1- 13.
doi: 10.4018/jdwm.2007070101
|
9 |
PRATHIBHAMOL C P, JYOTHY K V, NOORA B. Multi label classification based on logistic regression (MLC-LR)[C]//Proceedings of International Conference on Advances in Computing, Communications and Informatics. Washington D. C., USA: IEEE Press, 2016: 2708-2712.
|
10 |
TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Mining multi-label data[M]//MAIMON O, ROKACH L. Data mining and knowledge discovery handbook. Berlin, Germany: Springer, 2009: 667-685.
|
11 |
LUACES O, DÍEZ J, BARRANQUERO J, et al. Binary relevance efficacy for multilabel classification. Progress in Artificial Intelligence, 2012, 1 (4): 303- 313.
doi: 10.1007/s13748-012-0030-x
|
12 |
ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40 (7): 2038- 2048.
doi: 10.1016/j.patcog.2006.12.019
|
13 |
|
14 |
CHEN Z H, CHI Z R, FU H, et al. Multi-instance multi-label image classification: a neural approach. Neurocomputing, 2013, 99, 298- 306.
doi: 10.1016/j.neucom.2012.08.001
|
15 |
ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (8): 1819- 1837.
doi: 10.1109/TKDE.2013.39
|
16 |
BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009
|
17 |
VLUYMANS S, CORNELIS C, HERRERA F, et al. Multi-label classification using a fuzzy rough neighborhood consensus. Information Sciences, 2018, 433/434, 96- 114.
doi: 10.1016/j.ins.2017.12.034
|
18 |
HUANG J, LI G R, HUANG Q M, et al. Learning label-specific features and class-dependent labels for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (12): 3309- 3323.
doi: 10.1109/TKDE.2016.2608339
|
19 |
HUANG J, LI G R, WANG S H, et al. Multi-label classification by exploiting local positive and negative pairwise label correlation. Neurocomputing, 2017, 257, 164- 174.
doi: 10.1016/j.neucom.2016.12.073
|
20 |
HUANG J, LI G R, WANG S H, et al. Group sensitive classifier chains for multi-label classification[C]//Proceedings of International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2015: 1-6.
|
21 |
LI J D, CHENG K W, WANG S H, et al. Feature selection. ACM Computing Surveys, 2018, 50 (6): 1- 45.
doi: 10.1145/3136625
|
22 |
LI Y, LI T, LIU H. Recent advances in feature selection and its applications. Knowledge and Information Systems, 2017, 53 (3): 551- 577.
doi: 10.1007/s10115-017-1059-8
|
23 |
ZIEGEL E R. The elements of statistical learning. Technometrics, 2003, 45 (3): 267- 268.
doi: 10.1198/tech.2003.s770
|
24 |
ZHANG M L, WU L. LIFT: multi-label learning with label-specific features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (1): 107- 120.
doi: 10.1109/TPAMI.2014.2339815
|
25 |
HAN H, HUANG M, ZHANG Y, et al. Multi-label learning with label specific features using correlation information. IEEE Access, 2019, 7, 11474- 11484.
doi: 10.1109/ACCESS.2019.2891611
|
26 |
WENG W, LIN Y J, WU S X, et al. Multi-label learning based on label-specific features and local pairwise label correlation. Neurocomputing, 2018, 273, 385- 394.
doi: 10.1016/j.neucom.2017.07.044
|
27 |
ZHAO D W, GAO Q W, LU Y X, et al. Learning multi-label label-specific features via global and local label correlations. Soft Computing, 2022, 26 (5): 2225- 2239.
doi: 10.1007/s00500-021-06645-w
|
28 |
GUO Y M, CHUNG F, LI G Z, et al. Leveraging label-specific discriminant mapping features for multi-label learning. ACM Transactions on Knowledge Discovery from Data, 2019, 13 (2): 1- 23.
|
29 |
ZHANG J, LUO Z M, LI C D, et al. Manifold regularized discriminative feature selection for multi-label learning. Pattern Recognition, 2019, 95, 136- 150.
doi: 10.1016/j.patcog.2019.06.003
|
30 |
HUANG R, WU Z J. Multi-label feature selection via manifold regularization and dependence maximization. Pattern Recognition, 2021, 120, 113- 120.
doi: 10.1016/j.patcog.2021.108149
|
31 |
HU J C, LI Y H, GAO W F, et al. Robust multi-label feature selection with dual-graph regularization. Knowledge-Based Systems, 2020, 203, 10- 20.
doi: 10.1016/j.knosys.2020.106126
|
32 |
LIU B, LI Y M, XU Z L. Manifold regularized matrix completion for multi-label learning with ADMM. Neural Networks, 2018, 101, 57- 67.
doi: 10.1016/j.neunet.2018.01.011
|
33 |
HUANG J, LI G R, HUANG Q M, et al. Learning label specific features for multi-label classification[C]//Proceedings of International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2016: 181-190.
|
34 |
吴安奇, 高清维, 孙冬, 等. 多类别相关性结合的类属属性多标签学习. 模式识别与人工智能, 2020, 33 (8): 705- 715.
doi: 10.16451/j.cnki.issn1003-6059.202008004
|
|
WU A Q, GAO Q W, SUN D, et al. Multi-label label-specific features learning combined with multi-category correlation information. Pattern Recognition and Artificial Intelligence, 2020, 33 (8): 705- 715.
doi: 10.16451/j.cnki.issn1003-6059.202008004
|
35 |
LING Z L, YU K, ZHANG Y W, et al. Causal learner: a toolbox for causal structure and Markov blanket learning[EB/OL]. [2022-08-15]. https://arxiv.org/abs/2103.06544.
|
36 |
|
37 |
王庆鹏, 高清维, 卢一相, 等. 基于双向映射学习的多标签分类算法. 计算机应用研究, 2022, 39 (4): 1030- 1036.
doi: 10.19734/j.issn.1001-3695.2021.10.0406
|
|
WANG Q P, GAO Q W, LU Y X, et al. Multi-label classification algorithm based on bidirectional mapping learning. Application Research of Computers, 2022, 39 (4): 1030- 1036.
doi: 10.19734/j.issn.1001-3695.2021.10.0406
|
38 |
DING D Q, YANG X G, XIA F, et al. Unsupervised feature selection via adaptive hypergraph regularized latent representation learning. Neurocomputing, 2020, 378, 79- 97.
doi: 10.1016/j.neucom.2019.10.018
|
39 |
TANG C, BIAN M, LIU X W, et al. Unsupervised feature selection via latent representation learning and manifold regularization. Neural Networks, 2019, 117, 163- 178.
doi: 10.1016/j.neunet.2019.04.015
|
40 |
BERTSEKAS D P. Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Optimization for Machine Learning, 2011, 38, 1- 3.
doi: 10.1137/080726380
|
41 |
GOLDSTEIN T, O'DONOGHUE B, SETZER S, et al. Fast alternating direction optimization methods. SIAM Journal on Imaging Sciences, 2014, 7 (3): 1588- 1623.
doi: 10.1137/120896219
|
42 |
LI J, LI P, HU X, et al. Learning common and label-specific features for multi-Label classification with correlation information. Pattern Recognition, 2022, 121, 1- 12.
doi: 10.1016/j.patcog.2021.108259
|
43 |
COMBETTES P L, WAJS V R. Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation, 2005, 4 (4): 1168- 1200.
URL
|
44 |
WANG Y B, ZHENG W J, CHENG Y S, et al. Joint label completion and label-specific features for multi-label learning algorithm. Soft Computing, 2020, 24 (9): 6553- 6569.
doi: 10.1007/s00500-020-04775-1
|
45 |
TAN Y, SUN D, SHI Y, et al. Bi-directional mapping for multi-label learning of label-specific features. Applied Intelligence, 2022, 52 (7): 8147- 8166.
doi: 10.1007/s10489-021-02868-4
|
46 |
YU Z B, ZHANG M L. Multi-label classification with label-specific feature generation: a wrapped approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5199- 5210.
doi: 10.1109/TPAMI.2021.3070215
|
47 |
LIU X Y, ZHU J H, ZHENG Q H, et al. Bidirectional loss function for label enhancement and distribution learning. Knowledge-Based Systems, 2021, 213, 106690.
doi: 10.1016/j.knosys.2020.106690
|
48 |
HANG J Y, ZHANG M L. Collaborative learning of label semantics and deep label-specific features for multi-label classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (12): 9860- 9871.
|
49 |
DEMSAR J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7, 1- 30.
|