[1] PARK H R, LEE J M, MOON H E, et al.A short review on the current understanding of autism spectrum disorders[J].Experimental Neurobiology, 2016, 25(1):1-13. [2] RICE C.Prevalence of autism spectrum disorders-autism and developmental disabilities monitoring network, United States, 2006[J].Morbidity and Mortality Weekly Report Surveillance Summaries, 2009, 58(10):1-20. [3] BAIO J, WIGGINS L, CHRISTENSEN D L, et al.Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014[J].Morbidity and Mortality Weekly Report Surveillance Summaries, 2018, 67(6):1-23. [4] WANG F, LU L, WANG S B, et al.The prevalence of autism spectrum disorders in China:a comprehensive meta-analysis[J].International Journal of Biological Sciences, 2018, 14(7):717-725. [5] LORD C, BRUGHA T S, CHARMAN T, et al.Autism spectrum disorder[J].Nature Reviews Disease Primers, 2020, 6:5. [6] LÜ H, WANG Z, TONG E, et al.Resting-state functional MRI:everything that nonexperts have always wanted to know[J].AJNR American Journal of Neuroradiology, 2018, 39(8):1390-1399. [7] HULL J V, DOKOVNA L B, JACOKES Z J, et al.Resting-state functional connectivity in autism spectrum disorders:a review[J].Frontiers in Psychiatry, 2016, 7:205. [8] DE ZWART J A, GELDEREN P V, FUKUNAGA M, et al.Reducing correlated noise in fMRI data[J].Magnetic Resonance in Medicine, 2008, 59(4):939-945. [9] LUND T E.Non-white noise in fMRI:does modelling have an impact?[J].NeuroImage, 2006, 29(1):54-66. [10] DENG Z H, CHOI K S, CHUNG F L, et al.Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation[J].IEEE Transactions on Fuzzy Systems, 2011, 19(2):210-226. [11] HU Z Y, WANG J, ZHANG C X, et al.Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi-Sugeno-Kang fuzzy systems[J].IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(2):730-739. [12] TURNER B O, PAUL E J, MILLER M B, et al.Small sample sizes reduce the replicability of task-based fMRI studies[J].Communications Biology, 2018, 1:62. [13] TAKAGI T, SUGENO M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1):116-132. [14] XU P, DENG Z H, CUI C, et al.Concise fuzzy system modeling integrating soft subspace clustering and sparse learning[J].IEEE Transactions on Fuzzy Systems, 2019, 27(11):2176-2189. [15] GU X Q, CHUNG F L, ISHIBUCHI H, et al.Imbalanced TSK fuzzy classifier by cross-class Bayesian fuzzy clustering and imbalance learning[J].IEEE Transactions on Systems, Man, and Cybernetics, 2017, 47(8):2005-2020. [16] CERVANTES J, YU W, SALAZAR S, et al.Takagi-Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems[J].IEEE Transactions on Fuzzy Systems, 2017, 25(6):1601-1615. [17] DENG Z H, XU P, XIE L X, et al.Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(8):1481-1494. [18] WANG J, ZHANG Y, ZHOU T, et al.Interpretable feature learning using multi-output Takagi-Sugeno-Kang fuzzy system for multi-center ASD diagnosis[M].Berlin, Germany:Springer, 2019. [19] KARIMU R Y, AZADI S.Diagnosing the ADHD using a mixture of expert fuzzy models[J].International Journal of Fuzzy Systems, 2018, 20(4):1282-1296. [20] WANG G M.A sparse deep belief network with efficient fuzzy learning framework[J].Neural Networks, 2020, 121:430-440. [21] SHABAN W M.Detecting COVID-19 patients based on fuzzy inference engine and deep neural network[J].Applied Soft Computing, 2021, 99:106906. [22] LIU X, ZHANG F J, HOU Z Y, et al.Self-supervised learning:generative or contrastive[J].IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1):857-876. [23] FANG H C, WANG S C, ZHOU M, et al.CERT:contrastive self-supervised learning for language understanding[EB/OL].[2021-11-04].https://arxiv.org/abs/2005.12766. [24] CHEN T, KORNBLITH S, NOROUZI M, et al.A simple framework for contrastive learning of visual representations[EB/OL].[2021-11-04].https://arxiv.org/abs/2002.05709. [25] DUNN J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics, 1973, 3(3):32-57. [26] WINKLER R, KLAWONN F, KRUSE R.Fuzzy C-means in high dimensional spaces[J].International Journal of Fuzzy System Applications, 2011, 1(1):1-16. [27] WANG Z W, LIU C Y, CHENG D P, et al.Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network[J].IEEE Transactions on Medical Imaging, 2018, 37(5):1127-1139. [28] DI MARTINO A, YAN C G, LI Q, et al.The autism brain imaging data exchange:towards a large-scale evaluation of the intrinsic brain architecture in autism[J].Molecular Psychiatry, 2014, 19(6):659-667. [29] HE K M, ZHANG X Y, REN S Q, et al.Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1026-1034. [30] CORTES C, VAPNIK V.Support-vector networks[J].Machine Learning, 1995, 20(3):273-297. [31] CUTLER A, CUTLER D R, STEVENS J R.Random forests[M].Berlin, Germany:Springer, 2012. [32] DOMINGOS P M, PAZZANI M.On the optimality of the simple Bayesian classifier under zero-one loss[J].Machine Learning, 1997, 29:103-130. [33] HINTON G E, SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science, 2006, 313(5786):504-507. [34] NG A.Sparse autoencoder[EB/OL].[2021-11-04].https://www.doc88.com/p-3562925983842.html. [35] JANG J S.ANFIS:adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3):665-685. [36] JUANG C F, CHIU S H, SHIU S J.Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation[J].IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(6):1077-1087. [37] DENG Y, REN Z Q, KONG Y Y, et al.A hierarchical fused fuzzy deep neural network for data classification[J].IEEE Transactions on Fuzzy Systems, 2017, 25(4):1006-1012. |