作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (4): 263-271. doi: 10.19678/j.issn.1000-3428.0063521

• 开发研究与工程应用 • 上一篇    下一篇

面向自闭症辅助诊断的深度对比模糊神经网络

陆昭吾, 王骏, 施俊   

  1. 上海大学 通信与信息工程学院, 上海 200444
  • 收稿日期:2021-12-14 修回日期:2022-03-24 发布日期:2022-08-08
  • 作者简介:陆昭吾(1996-),男,硕士研究生,主研方向为人工智能、医疗影像处理;王骏(通信作者),副教授、博士;施俊,教授、博士。
  • 基金资助:
    上海市自然科学基金(20ZR1419900)。

Deep Contrastive Fuzzy Neural Network for Aided Diagnosis of Autism

LU Zhaowu, WANG Jun, SHI Jun   

  1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • Received:2021-12-14 Revised:2022-03-24 Published:2022-08-08

摘要: 静息态功能磁共振成像(rs-fMRI)可有效反映大脑活动状况,然而rs-fMRI数据的高随机性和自闭症谱系障碍(ASD)内在的高异质性给ASD计算机辅助诊断带来了不确定性。提出一种基于对比损失的Takagi-Sugeno-Kang (TSK)深度模糊神经网络CL-DeepTSK,结合多输出TSK (MO-TSK)模糊系统与多层感知机(MLP)有效缓解数据不确定性对模型的影响,提升TSK模糊系统的表达能力,并使模型更具可解释性。使用对比损失目标学习准则对MO-TSK与MLP进行联合优化,提高训练样本缺乏时的模型泛化性能。在ABIDE数据集上的实验结果表明,CL-DeepTSK的平均正确率和AUC指标分别达到70.0%和0.773,同时获得了30个最具鉴别性的功能连接。上述实验结果证明了CL-DeepTSK能够有效地进行自闭症辅助诊断,并且具有较高的可解释性。

关键词: 自闭症谱系障碍, 静息态功能性磁共振成像, Takagi-Sugeno-Kang模糊系统, 对比损失, 计算机辅助诊断

Abstract: Resting-state functional Magnetic Resonance Imaging(rs-fMRI) can effectively reflect brain activity.However, the high randomness in rs-fMRI data and high heterogeneity in autism cases cause high uncertainty in the diagnosis of Autism Spectrum Disorder(ASD). Hence, this study integrates a fuzzy system with a deep neural network and proposes a Takagi-Sugeno-Kang(TSK) deep fuzzy neural network based on Comparative Loss(CL), which is abbreviated as CL-DeepTSK.CL-DeepTSK combines the Multi-Output TSK(MO-TSK) fuzzy system with a Multilayer Perceptron(MLP), which effectively reduces the effect of data uncertainty on the model, improves the expression ability of the TSK fuzzy system, and renders the model interpretable. Additionally, MO-TSK and MLP are jointly optimized using a novel CL objective-learning criterion, which improves the generalization performance of the model when the training samples are insufficient. For the Autism Brain Imaging Data Exchange(ABIDE) dataset, the accuracy and Area Under Curve(AUC) of the CL-DeepTSK are 70.0% and 0.77, respectively, and the 30 most discriminative functional connections are obtained. Experimental results show that the proposed CL-DeepTSK model can be effective and interpretable for the auxiliary diagnosis of ASD.

Key words: Autism Spectrum Disorder(ASD), resting state functional Magnetic Resonance Imaging(rs-fMRI), Takagi-Sugeno-Kang(TSK) fuzzy system, Comparative Loss(CL), computer aided diagnosis

中图分类号: