[1] ISLAMI F, WARD E M, SUNG H, et al.Annual report to the nation on the status of cancer, part 1:national cancer statistics[J].Journal of the National Cancer Institute, 2021, 113(12):1648-1669. [2] 张杰妹, 杨词慧.基于RV-FCN的CT肝脏影像自动分割算法[J].计算机工程, 2019, 45(7):258-263. ZHANG J M, YANG C H.Automatic segmentation algorithm of CT liver image based on RV-FCN[J].Computer Engineering, 2019, 45(7):258-263.(in Chinese) [3] CHI Y L, ZHOU J Y, VENKATESH S K, et al.Content-based image retrieval of multiphase CT images for focal liver lesion characterization[J].Medical Physics, 2013, 40(10):103502-103513. [4] CHEN E L, CHUNG P C, CHEN C L, et al.An automatic diagnostic system for CT liver image classification[J].IEEE Transactions on Biomedical Engineering, 1998, 45(6):783-794. [5] NINO-MURCIA M, OLCOTT E W, JEFFREY R B, et al.Focal liver lesions:pattern-based classification scheme for enhancement at arterial phase CT[J].Radiology, 2000, 215(3):746-751. [6] YANG W, LU Z, YU M, et al.Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single and multiphase contrast-enhanced CT images[J].Digit Imaging, 2012, 25(6):708-719. [7] WANG J, HAN X H, XU Y Y, et al.Sparse codebook model of local structures for retrieval of focal liver lesions using multiphase medical images[J].International Journal of Biomedical Imaging, 2017, 17(5):1-13. [8] YU M, FENG Q J, YANG W, et al.Extraction of lesion-partitioned features and retrieval of contrast-enhanced liver images[J].Computational and Mathematical Methods in Medicine, 2012, 61(11):1-12. [9] ROY S, CHI Y L, LIU J M, et al.Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions[J].IEEE Transactions on Biomedical Engineering, 2014, 61(11):2768-2778. [10] DIAMANT I, HOOGI A, BEAULIEU C F, et al.Improved patch-based automated liver lesion classification by separate analysis of the interior and boundary regions[J].IEEE Journal of Biomedical and Health Informatics, 2016, 20(6):1585-1594. [11] 吉志远.基于多期相三维CT图像的肝脏肿瘤分类算法研究[D].杭州:浙江大学, 2018. JI Z Y.A study on focal liver lesion classification based on multiphase 3D CT images[D].Hangzhou:Zhejiang University, 2018.(in Chinese) [12] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[EB/OL].[2022-03-10].https://arxiv.org/abs/1512.03385. [13] BELHAOUARI S B, ISLAM A.Deep learning in healthcare[EB/OL].[2022-03-10].2021.https://www.researchgate.net/publication/353727328_Deep_Learning_in_Healthcare. [14] ESTEVA A, KUPREL B, NOVOA R A, et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature, 2017, 542(7639):115-118. [15] PENG L Y, LIN L F, HU H J, et al.Classification and quantification of emphysema using a multi-scale residual network[J].IEEE Journal of Biomedical and Health Informatics, 2019, 23(6):2526-2536. [16] FRID-ADAR M, DIAMANT I, KLANG E, et al.Modeling the intra-class variability for liver lesion detection using a multi-class patch-based CNN[M]//WU G R, MUNSELL B C, ZHAN Y Q, et al.Patch-Based Techniques in Medical Imaging.Berlin, Germany:Springer, 2017:129-137. [17] YASAKA K, AKAI H, ABE O, et al.Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT:a preliminary study[J].Radiology, 2018, 286(3):887-896. [18] LIANG D, LIN L F, HU H J, et al.Residual convolutional neural networks with global and local pathways for classification of focal liver lesions[M]//GENG X, KANG B H.PRICAI 2018:Trends in Artificial Intelligence.Berlin, Germany:Springer, 2018:617-628. [19] TODOROKI Y, IWAMOTO Y, LIN L F, et al.Automatic detection of focal liver lesions in multi-phase CT images using a multi-channel & multi-scale CNN[C]//Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Washington D.C., USA:IEEE Press, 2019:872-875. [20] LIANG D, LIN L F, CHEN X, et al.Multi-stream scale-insensitive convolutional and recurrent neural networks for liver tumor detection in dynamic ct images[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2019:794-798. [21] HASEGAWA R, IWAMOTO Y, LIN L F, et al.Automatic segmentation of liver tumor in multiphase CT images by mask R-CNN[C]//Proceedings of the 2nd Global Conference on Life Sciences and Technologies.Washington D.C., USA:IEEE Press, 2020:231-234. [22] VAEZI JOZE H R, SHABAN A, IUZZOLINO M L, et al.MMTM:multimodal transfer module for CNN fusion[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:13286-13296. [23] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[EB/OL].[2022-03-10].https://arxiv.org/abs/1709.01507. [24] ZHANG Y L, LI K P, LI K, et al.Image super-resolution using very deep residual channel attention networks[M]//FERRARI V, HEBERT M, SMINCHISESCU C, et aL Computer Vision-ECCV 2018.Berlin, Germany:Springer, 2018:294-310. [25] SUN Y, WANG X G, TANG X O.Deep learning face representation from predicting 10000 classes[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:1891-1898. [26] XU Y Y, LIN L F, HU H J, et al.Texture-specific bag of visual words model and spatial cone matching-based method for the retrieval of focal liver lesions using multiphase contrast-enhanced CT images[J].International Journal of Computer Assisted Radiology and Surgery, 2018, 13(1):151-164. [27] WANG J.Tensor-based sparse representations of multi-phase medical images for classification of focal liver lesions[J].Pattern Recognition Letters, 2020, 130:207-215. [28] BROOKS T, MILDENHALL B, XUE T F, et al.Unprocessing images for learned raw denoising[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:11028-11037. [29] RUDER S.An overview of gradient descent optimization algorithms[EB/OL].[2022-03-10].https://arxiv.org/abs/1609.04747. [30] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [31] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-03-10].https://arxiv.org/abs/1409.1556. [32] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:1-9. |