作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (1): 250-257,269. doi: 10.19678/j.issn.1000-3428.0063897

• 图形图像处理 • 上一篇    下一篇

多专家注释的视杯和视盘不确定性量化

刘丽霞, 宣士斌, 刘畅, 李嘉祥   

  1. 广西民族大学 人工智能学院, 南宁 530006
  • 收稿日期:2022-02-12 修回日期:2022-04-06 发布日期:2023-01-06
  • 作者简介:刘丽霞(1997-),女,硕士研究生,主研方向为医学图像分割;宣士斌(通信作者),教授、博士;刘畅、李嘉祥,硕士研究生。
  • 基金资助:
    国家自然科学基金(61866003)。

Quantification of Optic Cup and Optic Disc Uncertainty with Multi-Expert Annotations

LIU Lixia, XUAN Shibin, LIU Chang, LI Jiaxiang   

  1. School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
  • Received:2022-02-12 Revised:2022-04-06 Published:2023-01-06

摘要: 现有基于深度学习的视杯和视盘分割方法在模型训练时,仅使用图像的单个注释或从多个注释中获取唯一的注释信息,忽略原始多专家标注中嵌入的一致性或差异性信息,从而导致模型和预测结果过度自信等问题。提出一种基于多解码器不确定性感知体系的模型MUA-Net。通过引入专业知识推断模块,将各个专家注释的专业知识水平作为先验知识嵌入编码器和解码器的瓶颈中,以形成包含专家线索的高级语义特征。利用可同时学习多个注释的多解码器结构调节多专家之间的分歧,重构多专家注释过程,并对不确定或分歧区域进行量化。提出一种双分支软注意机制,增强多解码器分割预测的模糊区域,得到最终校准的分割结果。实验结果表明,该模型在RIGA数据集上能以较高的不确定性预测合理的区域,与MRNet模型相比,该模型在视杯分割中的平均精度、Dice系数、交并比分别提升了0.75、0.39、0.41个百分点。

关键词: 不确定性估计, 多解码器, 多专家注释, 视杯视盘分割, 软注意机制

Abstract: Existing methods for segmenting images of optic cups and optic discs based on deep learning have some limitations in terms of training. For example, they may use only a single annotation of an image or obtain unique information from multiple annotations and, thus, ignore consistency or difference information embedded in the original annotations by multiple experts; this typically causes overconfidence in the model and prediction results.In this study, a multi-decoder uncertainty-aware model called MUA-Net is proposed.First, an Expertise-aware Inferring Module (EIM) is introduced to embed information on the level of professional knowledge of each expert annotation into the bottleneck of an encoder and a decoder as a priori knowledge to construct high-level semantic features containing information provided by experts.This enables the proposed multi-decoder structure to learn multiple annotations simultaneously to adjust the divergence between multiple experts, reconstruct the multi-expert annotation process, and quantify uncertain or divergent regions.Finally, a dual-branch soft attention mechanism is proposed to further enhance the fuzzy region predicted by using multi-decoder segmentation to obtain calibrated segmentation results and improve segmentation performance.The experimental results show that the model can predict reasonable regions with high uncertainty on the RIGA dataset.Compared with the MRNet model, the mean accuracy, Dice coefficient, and Intersection over Union(IoU) of the model in the cup segmentation are improved by 0.75, 0.39, and 0.41 percentage points respectively.

Key words: uncertainty estimation, multi-decoder, multi-expert annotation, optic cup and optic disc segmentation, soft attention mechanism

中图分类号: