[1] FU H Z, CHENG J, XU Y W, et al.Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J].IEEE Transactions on Medical Imaging, 2018, 37(7):1597-1605. [2] ZHANG Q M, LIU L Y, MA K, et al.Cross-denoising network against corrupted labels in medical image segmentation with domain shift[EB/OL].[2022-01-10].https://www.semanticscholar.org/paper/Cross-denoising-Network-against-Corrupted-Labels-in-Zhang-Liu/d14cbc0b64e75330a85fe4b9fb038536abbb3695. [3] LI G, LI C S, ZENG C, et al.Region focus network for joint optic disc and cup segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Menlo Park, USA:AAAI Press, 2020:751-758. [4] WARFIELD S K, ZOU K H, WELLS W M.Simultaneous truth and performance level estimation (STAPLE):an algorithm for the validation of image segmentation[J].IEEE Transactions on Medical Imaging, 2004, 23(7):903-921. [5] ZHANG S H, FU H Z, YAN Y G, et al.Attention guided network for retinal image segmentation attention guided network for retinal image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:797-805. [6] JENSEN M H, JØRGENSEN D R, JALABOI R, et al.Improving uncertainty estimation in convolutional neural networks using inter-rater agreement[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:540-548. [7] GUAN M, GULSHAN V, DAI A, et al.Who said what:modeling individual labelers improves classification[EB/OL].[2022-01-10].https://www.xueshufan.com/publication/2963772355. [8] BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K, et al.Weight uncertainty in neural networks[EB/OL].[2022-01-10].https://arxiv.org/abs/1505.05424. [9] KENDALL A, GAL Y.What uncertainties do we need in Bayesian deep learning for computer vision?[EB/OL].[2022-01-10].https://arxiv.org/abs/1703.04977. [10] HÜLLERMEIER E, WAEGEMAN W.Aleatoric and epistemic uncertainty in machine learning:an introduction to concepts and methods[J].Machine Learning, 2021, 110(3):457-469. [11] ABDAR M, POURPANAH F, HUSSAIN S, et al.A review of uncertainty quantification in deep learning:techniques, applications and challenges[J].Information Fusion, 2021, 76:243-297. [12] GAWLIKOWSKI J, TASSI C R N, ALI M, et al.A survey of uncertainty in deep neural networks[EB/OL].[2022-01-10].https://arxiv.org/abs/2107.03342. [13] GAL Y, GHAHRAMANI Z.Dropout as a Bayesian approximation:representing model uncertainty in deep learning[EB/OL].[2022-01-10].https://arxiv.org/abs/1506.02142. [14] LAVES M H, IHLER S, KORTMANN K P, et al.Well-calibrated model uncertainty with temperature scaling for dropout variational inference[EB/OL].[2022-01-10].https://arxiv.org/abs/1909.13550. [15] HUMT M, LEE J, TRIEBEL R.Bayesian optimization meets Laplace approximation for robotic introspection[EB/OL].[2022-01-10].https://arxiv.org/abs/2010.16141. [16] LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C.Simple and scalable predictive uncertainty estimation using deep ensembles[EB/OL].[2022-01-10].https://arxiv.org/abs/1612.01474. [17] BELUCH W H, GENEWEIN T, NURNBERGER A, et al.The power of ensembles for active learning in image classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9368-9377. [18] GUSTAFSSON F K, DANELLJAN M, SCHON T B.Evaluating scalable Bayesian deep learning methods for robust computer vision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:1289-1298. [19] STAHL N, FALKMAN G, KARLSSON A, et al.Evaluation of uncertainty quantification in deep learning[C]//Proceedings of International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems.Berlin, Germany:Springer, 2020:556-568. [20] KOHL S A A, ROMERA-PAREDES B, MEYER C, et al.A probabilistic U-net for segmentation of ambiguous images[EB/OL].[2022-01-10].https://arxiv.org/abs/1806.05034. [21] BAUMGARTNER C F, TEZCAN K C, CHAITANYA K, et al.Phiseg:capturing uncertainty in medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:119-127. [22] GANTENBEIN M, ERDIL E, KONUKOGLU E.RevPHiSeg:a memory-efficient neural network for uncertainty quantification in medical image segmentation[M]//Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Graphs in Biomedical Image Analysis.Berlin, Germany:Springer, 2020:13-22. [23] HU S, WORRALL D, KNEGT S, et al.Supervised uncertainty quantification for segmentation with multiple annotations[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:137-145. [24] MIRIKHARAJI Z, ABHISHEK K, IZADI S, et al.D-LEMA:deep learning ensembles from multiple annotations-application to skin lesion segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2021:1837-1846. [25] ZENG D W, LI M Q, DING Y K, et al.Segmentation with multiple acceptable annotations:a case study of myocardial segmentation in contrast echocardiography[C]//Proceedings of International Conference on Information Processing in Medical Imaging.Berlin, Germany:Springer, 2021:478-491. [26] WANG Q L, YANG H, SHEN L, et al.Uncertainty-aware lung nodule segmentation with multiple annotations[EB/OL].[2022-01-10].https://arxiv.org/abs/2110.12372. [27] VALIUDDIN M M A, VIVIERS C G A, VAN SLOUN R J G, et al.Improving aleatoric uncertainty quantification in multi-annotated medical image segmentation with normalizing flows[M]//Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis.Berlin, Germany:Springer, 2021:75-88. [28] ZHANG Y, KERS J, CASSOL C A, et al.U-Net-and-a-half:convolutional network for biomedical image segmentation using multiple expert-driven annotations[EB/OL].[2022-01-10].https://www.xueshufan.com/publication/3192108523. [29] YU S, ZHOU H Y, MA K, et al.Difficulty-aware glaucoma classification with multi-rater consensus modeling[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2020:741-750. [30] YANG Y, GUO X, PAN Y, et al.Uncertainty quantification in medical image segmentation with multi-decoder U-Net[EB/OL].[2022-01-10].https://link.springer.com/chapter/10.1007/978-3-031-09002-8_50. [31] JI W, YU S, WU J D, et al.Learning calibrated medical image segmentation via multi-rater agreement modeling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12336-12346. [32] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [33] SHI X J, CHEN Z R, WANG H, et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[EB/OL].[2022-01-10].https://arxiv.org/abs/1506.04214. [34] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [35] ALMAZROA A, ALODHAYB S, OSMAN E, et al.Agreement among ophthalmologists in marking the optic disc and optic cup in fundus images[J].International Ophthalmology, 2017, 37(3):701-717. [36] ZHANG S, FU H, YAN Y, et al.Attention guided network for retinal image segmentation[C]///Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2019:797-805. [37] GU Z W, CHENG J, FU H Z, et al.CE-net:context encoder network for 2D medical image segmentation[J].IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292. [38] YU S.Robust optic disc and cup segmentation with deep learning for glaucoma detection[J].Computerized Medical Imaging and Graphics, 2019, 74:61-71. [39] WANG S J, YU L Q, YANG X, et al.Patch-based output space adversarial learning for joint optic disc and cup segmentation[J].IEEE Transactions on Medical Imaging, 2019, 38(11):2485-2495. [40] WANG S J, YU L Q, LI K, et al.Boundary and entropy-driven adversarial learning for fundus image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:102-110. |