[1] 罗浩, 姜伟, 范星, 等.基于深度学习的行人重识别研究进展[J].自动化学报, 2019, 45(11):2032-2049. LUO H, JIANG W, FAN X, et al.A survey on deep learning based person re-identification[J].Acta Automatica Sinica, 2019, 45(11):2032-2049.(in Chinese) [2] 李幼蛟, 卓力, 张菁, 等.行人再识别技术综述[J].自动化学报, 2018, 44(9):1554-1568. LI Y J, ZHUO L, ZHANG J, et al.A survey of person re-identification[J].Acta Automatica Sinica, 2018, 44(9):1554-1568.(in Chinese) [3] SUN Y F, ZHENG L, YANG Y, et al.Beyond part models:person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:480-496. [4] 董亚超, 刘宏哲, 徐成.基于显著性多尺度特征协作融合的行人重识别方法[J].计算机工程, 2021, 47(6):234-244, 252. DONG Y C, LIU H Z, XU C.Person re-identification method based on joint fusion of saliency multi-scale features[J]. Computer Engineering, 2021, 47(6):234-244, 252.(in Chinese) [5] ZHENG F, DENG C, SUN X, et al.Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:8506-8514. [6] FU Y, WEI Y C, ZHOU Y Q, et al.Horizontal pyramid matching for person re-identification[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:8295-8302. [7] ZHOU K Y, YANG Y X, CAVALLARO A, et al.Omni-scale feature learning for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3701-3711. [8] ZHUO J X, LAI J H, CHEN P J.A novel teacher-student learning framework for occluded person re-identification[EB/OL].[2021-05-05].https://arxiv.org/pdf/1907.03253.pdf. [9] CHEN B H, DENG W H, HU J N.Mixed high-order attention network for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:371-381. [10] BRYAN B, GONG Y, ZHANG Y Z, et al.Second-order non-local attention networks for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3759-3768. [11] HOU R B, MA B P, CHANG H, et al.Interaction-and-aggregation network for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9309-9318. [12] 李佳宾, 李学伟, 刘宏哲, 等.基于局部特征关联与全局注意力机制的行人重识别[J].计算机工程, 2022, 48(1):245-252. LI J B, LI X W, LIU H Z, et al.Person re-identification based on local feature relation and global attention mechanism[J].Computer Engineering, 2022, 48(1):245-252.(in Chinese) [13] CHEN T L, DING S J, XIE J Y, et al.ABD-net:attentive but diverse person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8350-8360. [14] QUAN R J, DONG X Y, WU Y, et al.Auto-ReID:searching for a part-aware ConvNet for person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3749-3758. [15] YE M, SHEN J, LIN G, et al.Deep learning for person re-identification:a survey and outlook[EB/OL].[2021-05-05].https://arxiv.org/abs/2001.04193. [16] MA X, GUO J D, TANG S H, et al.Learning connected attentions for convolutional neural networks[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2021:1-6. [17] CUBUK E D, ZOPH B, MANE D, et al.AutoAugment:learning augmentation policies from data[EB/OL].[2021-05-05].https://arxiv.org/abs/1805.09501. [18] ZHENG L, SHEN L Y, TIAN L, et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1116-1124. [19] RISTANI E, SOLERA F, ZOU R, et al.Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:17-35. [20] WEI L H, ZHANG S L, GAO W, et al.Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:79-88. [21] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [22] CHEN W H, CHEN X T, ZHANG J G, et al.Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1320-1329. [23] SUN Y F, CHENG C M, ZHANG Y H, et al.Circle loss:a unified perspective of pair similarity optimization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6397-6406. [24] HE L X, LIAO X Y, LIU W, et al.FastReID:a pytorch toolbox for general instance re-identification[EB/OL].[2021-05-05].https://arxiv.org/abs/2006.02631. [25] ZHONG Z, ZHENG L, CAO D L, et al.Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3652-3661. |