作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (3): 211-220. doi: 10.19678/j.issn.1000-3428.0063921

• 移动互联与通信技术 • 上一篇    下一篇

面向超宽带室内定位的FCM-SSGP方法

张盛1,2, 唐帆1, 张天骐1, 范森1   

  1. 1. 重庆邮电大学 通信与信息工程学院, 重庆 400065;
    2. 清华大学 深圳国际研究生院, 广东 深圳 518055
  • 收稿日期:2022-02-12 修回日期:2022-04-15 发布日期:2022-05-03
  • 作者简介:张盛(1975—),男,副教授、博士,主研方向为无线通信、超宽带定位;唐帆(通信作者),硕士研究生;张天骐,教授、博士,范森,硕士研究生。
  • 基金资助:
    国家自然科学基金(61671095,61702065,61701067,61771085);重庆市市级重点实验室建设项目(CSTC2009CA2003);重庆市自然科学基金(cstc2021jcyj-msxmX0836);重庆市教育委员会科研项目(KJ1600427,KJ1600429)。

FCM-SSGP Method for Ultra-Wideband Indoor Localization

ZHANG Sheng1,2, TANG Fan1, ZHANG Tianqi1, FAN Sen1   

  1. 1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 40065, China;
    2. School of Shenzhen International Graduate, Tsinghua University, Shenzhen 518055, Guangdong, China
  • Received:2022-02-12 Revised:2022-04-15 Published:2022-05-03

摘要: 受室内墙壁、玻璃、木门等障碍物影响,UWB室内定位中UWB信号的传播环境变为非视距环境,在该环境下定位将极大降低定位精度。现有抑制NLOS误差的方法由于复杂度较大导致定位时间过长,结合模糊C均值(FCM)聚类及稀疏谱高斯过程回归(SSGP)方法,提出一种FCM-SSGP定位方法。对接收到的信道冲击响应信号提取特征,利用FCM聚类识别NLOS信号,并根据NLOS信号传播环境的恶劣程度将NLOS信号划分为轻度NLOS信号和一般NLOS信号。使用SSGP方法分别得到2个不同信道条件下的NLOS误差,将SSGP方法得到的测距误差与FCM聚类得到的隶属度相结合作为权值,以抑制NLOS误差。实验结果表明,FCM-SSGP方法能有效降低不同障碍物带来的NLOS误差,定位误差为21.01 cm,与LS-SVM及SPGP方法相比,其定位误差均值分别提升了8.23 cm和6.73 cm,定位所需时间相比LSTM方法缩短了9.35倍,在保证高定位精度的同时降低了计算复杂度。

关键词: 非视距抑制, 非视距识别, 模糊C均值, 稀疏谱高斯过程, 超宽带定位

Abstract: Obstacles such as indoor walls, glass, and wooden doors influence the propagation environment of Ultra-Wideband(UWB) signals in UWB indoor positioning, and the environment becomes a Non-Line-of-Sight(NLOS) environment, in which positioning considerably reduces positioning accuracy.Existing methods to mitigate NLOS errors take too long to locate due to the complexity.This paper presents a positioning method that combines Fuzzy C-Means (FCM) clustering and Sparse Spectral Gaussian Process(SSGP) regression and is named FCM-SSGP.The characteristics of the received channel impact response signal are determined, and FCM clustering is used to identify the NLOS signal and divide this signal into mild and general NLOS signals depending on the severity of the NLOS signal propagation environment.The NLOS errors under two different channel conditions are obtained by using the SSGP method.The ranging errors obtained by combining the SSGP method with the membership degree obtained by applying FCM clustering are used as weights to alleviate the NLOS errors.The results show that the FCM-SSGP method can effectively reduce the NLOS error caused by different obstacles, achieving a positioning error of 21.01 cm.The mean value of positioning error is improved by 8.23 cm and 6.73 cm compared with those of the LS-SVM and SPGP methods, respectively, and the time required for positioning is reduced by 9.35 times that of the LSTM method.This method ensures high positioning accuracy and reduces computational complexity.

Key words: Non-Line of Sight (NLOS) mitigation, NLOS identification, Fuzzy C-Means(FCM) clustering, Sparse Spectral Gaussian Process(SSGP) regression, Ultra-Wideband(UWB) localization

中图分类号: