[1] ZAFARI F, GKELIAS A, LEUNG K K.A survey of indoor localization systems and technologies[J].IEEE Communications Surveys & Tutorials, 2019, 21(3):2568-2599. [2] JIMÉNEZ RUIZ A R, SECO GRANJA F.Comparing ubisense, BeSpoon, and DecaWave UWB location systems:indoor performance analysis[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(8):2106-2117. [3] WANG W, WANG G, ZHANG J, et al.Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions[J].IEEE Communications Letters, 2017, 21(10):2226-2229. [4] 杨刚, 朱士玲, 李强, 等.融合UWB与INS的消防员室内定位与NLOS检测算法[J].计算机工程, 2021, 47(9):153-161. YANG G, ZHU S L, LI Q, et al.Indoor firefighter positioning and NLOS detection algorithm based on UWB and INS[J].Computer Engineering, 2021, 47(9):153-161.(in Chinese) [5] MUQAIBEL A H, LANDOLSI M A, MAHMOOD M N.Practical evaluation of NLOS/LOS parametric classification in UWB channels[C]//Proceedings of the 1st International Conference on Communications, Signal Processing, and their Applications.Washington D.C., USA:IEEE Press, 2013:1-6. [6] KRISTENSEN J B, MASSANET GINARD M, JENSEN O K, et al.Non-line-of-sight identification for UWB indoor positioning systems using support vector machines[C]//Proceedings of IEEE MTT-S International Wireless Symposium.Washington D.C., USA:IEEE Press, 2019:1-3. [7] BREGAR K, HROVAT A, MOHORI M.NLOS channel detection with multilayer perceptron in low-rate personal area networks for indoor localization accuracy improvement[C]//Proceedings of the 8th Jožef Stefan International Postgraduate School Student Conference.Ljubljana, Slovenia:Jožef Stefan Institute, 2016:1-5. [8] MUSA A, NUGRAHA G D, HAN H, et al.A decision tree-based NLOS detection method for the UWB indoor location tracking accuracy improvement[J].International Journal of Communication Systems, 2019, 32(13):39-97. [9] MARANÒ S, GIFFORD W M, WYMEERSCH H, et al.NLOS identification and mitigation for localization based on UWB experimental data[J].IEEE Journal on Selected Areas in Communications, 2010, 28(7):1026-1035. [10] 王斐, 徐湛, 职如昕, 等.基于卷积神经网络的OFDM-UWB信道环境识别[J].计算机工程, 2021, 47(7):161-167. WANG F, XU Z, ZHI R X, et al.OFDM-UWB channel environment recognition based on convolutional neural network[J].Computer Engineering, 2021, 47(7):161-167.(in Chinese) [11] YU K G, WEN K, LI Y B, et al.A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments[J].IEEE Transactions on Vehicular Technology, 2019, 68(1):686-699. [12] WU S H, MA Y K, ZHANG Q Y, et al.NLOS error mitigation for UWB ranging in dense multipath environments[C]//Proceedings of IEEE Wireless Communications and Networking Conference.Washington D.C., USA:IEEE Press, 2007:1565-1570. [13] WYMEERSCH H, MARANO S, GIFFORD W M, et al.A machine learning approach to ranging error mitigation for UWB localization[J].IEEE Transactions on Communications, 2012, 60(6):1719-1728. [14] BARRAL V, ESCUDERO C J, GARCÍA-NAYA J A, et al.NLOS identification and mitigation using low-cost UWB devices[J].Sensors (Basel, Switzerland), 2019, 19(16):3464-3473. [15] CHEN Y Y, HUANG S P, WU T W, et al.UWB system for indoor positioning and tracking with arbitrary target orientation, optimal anchor location, and adaptive NLOS mitigation[J].IEEE Transactions on Vehicular Technology, 2020, 69(9):9304-9314. [16] YANG X F.NLOS mitigation for UWB localization based on sparse pseudo-input Gaussian process[J].IEEE Sensors Journal, 2018, 18(10):4311-4316. [17] LÁZARO-GREDILLA M, CANDELA J Q, RASMUSSEN C, et al.Sparse spectrum Gaussian process regression[J].Journal of Machine Learning Research, 2010, 11:1865-1881. [18] ABBASI A, LIU H P.Novel cascade CNN algorithm for UWB signal denoising, compressing, and ToA estimation[C]//Proceedings of the 11th Annual Computing and Communication Workshop and Conference.Washington D.C., USA:IEEE Press, 2021:721-725. [19] LANDOLSI M A, ALMUTAIRI A F, KOURAH M A.LOS/NLOS channel identification for improved localization in wireless ultra-wideband networks[J].Telecommunication Systems, 2019, 72(3):441-456. [20] WANG F, XU Z, ZHI R X, et al.LOS/NLOS channel identification technology based on CNN[C]//Proceedings of the 6th NAFOSTED Conference on Information and Computer Science (NICS).Washington D.C., USA:IEEE Press, 2019:200-203. [21] ZENG Z Q, LIU S, WANG L.UWB NLOS identification with feature combination selection based on genetic algorithm[C]//Proceedings of 2019 IEEE International Conference on Consumer Electronics.Washington D.C., USA:IEEE Press, 2019:1-5. [22] RASMUSSEN C E, WILLIAMS C K I.Gaussian processes for machine learning[EB/OL].[2021-01-02].https://www.researchgate.net/publication/41781559_Gaussian_Process_for_Machine_Learning. [23] PARK S H, BAE Y B, FIDAN B, et al.Distance-based mobile node localization of fixed beacons using RMS prop[C]//Proceedings of the 58th Annual Conference of the Society of Instrument and Control Engineers of Japan.Washington D.C., USA:IEEE Press, 2019:376-381. [24] YANG S W, WANG B.Residual based weighted least square algorithm for bluetooth/UWB indoor localization system[C]//Proceedings of the 36th Chinese Control Conference.Washington D.C., USA:IEEE Press, 2017:5959-5963. |