[1] XU C, TAO D C, XU C.A survey on multi-view learning[EB/OL].[2021-05-11].https://arxiv.org/abs/1304.5634. [2] WEN J, ZHANG Z, XU Y, et al.Unified embedding alignment with missing views inferring for incomplete multi-view clustering[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and the 31st Innovative Applications of Artificial Intelligence Conference and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:5393-5400. [3] ZONG L L, ZHANG X C, LIU X Y, et al.Weighted multi-view spectral clustering based on spectral perturbation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:4621-4629. [4] JOHNSON S C.Hierarchical clustering schemes[J].Psychometrika, 1967, 32(3):241-254. [5] LEE J W T, YEUNG D S, TSANG E C C.Hierarchical clustering based on ordinal consistency[J].Pattern Recognition, 2005, 38(11):1913-1925. [6] WU K L, YANG M S.Alternative c-means clustering algorithms[J].Pattern Recognition, 2002, 35(10):2267-2278. [7] ZHANG D Q, CHEN S C.A comment on "alternative c-means clustering algorithms"[J].Pattern Recognition, 2004, 37(2):173-174. [8] TSENG P.Nearest q-flat to m points[J].Journal of Optimization Theory and Applications, 2000, 105(1):249-252. [9] WANG Y, ZHANG W J, WU L, et al.Iterative views agreement:an iterative low-rank based structured optimization method to multi-view spectral clustering[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2016:2153-2159. [10] PEDRYCZ W.Collaborative fuzzy clustering[J].Pattern Recognition Letters, 2002, 23(14):1675-1686. [11] CORNUÉJOLS A, WEMMERT C, GANÇARSKI P, et al.Collaborative clustering:why, when, what and how[J].Information Fusion, 2018, 39:81-95. [12] COSTEIRA J P, KANADE T.A multi-body factorization method for independently moving objects[J].International Journal of Computer Vision, 1998, 29(3):159-179. [13] LIU Y Y, JIAO L C, SHANG F H.An efficient matrix factorization based low-rank representation for subspace clustering[J].Pattern Recognition, 2013, 46(1):284-292. [14] WANG X B, LEI Z, SHI H L, et al.Co-referenced subspace clustering[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2018:1-6. [15] GUO X J.Robust subspace segmentation by simultaneously learning data representations and their affinity matrix[C]//Proceedings of the 24th International Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2015:3547-3553. [16] WANG X B, GUO X J, LEI Z, et al.Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1-9. [17] BRBIĆ M, KOPRIVA I.Multi-view low-rank sparse subspace clustering[J].Pattern Recognition, 2018, 73:247-258. [18] ASUR S, UCAR D, PARTHASARATHY S.An ensemble framework for clustering protein-protein interaction networks[J].Bioinformatics, 2007, 23(13):29-40. [19] WANG H J, SHAN H H, BANERJEE A.Bayesian cluster ensembles[J].Statistical Analysis and Data Mining, 2011, 4(1):54-70. [20] CHAUDHURI K, KAKADE S M, LIVESCU K, et al.Multi-view clustering via canonical correlation analysis[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York, USA:ACM Press, 2009:129-136. [21] NIU D L, JENNIFER G D, JORDAN M I.Multiple non-redundant spectral clustering views[C]//Proceedings of the 27th International Conference on Machine Learning.New York, USA:ACM Press, 2010:831-838. [22] CAI X, NIE F P, HUANG H, et al.Heterogeneous image feature integration via multi-modal spectral clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2011:1977-1984. [23] KUMAR A, RAI P, DAUME H.Co-regularized multi-view spectral clustering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2011, 24:1413-1421. [24] CAI X, NIE F P, HUANG H.Multi-view k-means clustering on big data[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2013:2598-2604. [25] WANG H, NIE F P, HUANG H.Multi-view clustering and feature learning via structured sparsity[J].Journal of Machine Learning Research, 2013, 28(3):352-360. [26] 洪敏, 贾彩燕, 王晓阳.K-means型多视图聚类中的初始化问题研究[J].计算机科学与探索, 2019, 13(4):574-585. HONG M, JIA C Y, WANG X Y.Research on initialization of K-means type multi-view clustering[J].Journal of Frontiers of Computer Science and Technology, 2019, 13(4):574-585.(in Chinese) [27] XIA R, PAN Y, DU L, et al.Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2014:2149-2155. [28] CLEUZIOU G, EXBRAYAT M, MARTIN L, et al.CoFKM:a centralized method for multiple-view clustering[C]//Proceedings of the 9th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2009:752-757. [29] JIANG Y Z, CHUNG F L, WANG S T, et al.Collaborative fuzzy clustering from multiple weighted views[J].IEEE Transactions on Cybernetics, 2015, 45(4):688-701. [30] CAI D, HE X, HAN J, et al.Document clustering using locality preserving indexing[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12):1624-1637. [31] CHEN G H, PAN Y, GUO M Y, et al.COMPACT:a comparative package for clustering assessment[C]//Proceedings of 2005 International Conference on Parallel and Distributed Processing and Applications.Berlin, Germany:Springer, 2005:159-167. [32] NAYAR S.Columbia Object Image Library(COIL20)[EB/OL].[2021-05-11].https://www.researchgate.net/publication/2784735_Columbia_Object_Image_Library_COIL-100. [33] CAI D, HE X F, HAN J W.Using graph model for face analysis[EB/OL].[2021-05-11].https://www.semanticscholar.org/paper/Using-Graph-Model-for-Face-Analysis-Cai-He/19c889f2b26b785f0ac45c427339f0335b9cc514?p2df. [34] GREENE D, CUNNINGHAM P.A matrix factorization approach for integrating multiple data views[M].Berlin, Germany:Springer, 2009. [35] CHUA T S, TANG J H, HONG R C, et al.NUS-WIDE:a real-world Web image database from National University of Singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval.New York, USA:ACM Press, 2009:1-9. [36] BRBIĆ M, PIŠKOREC M, VIDULIN V, et al.The landscape of microbial phenotypic traits and associated genes[J].Nucleic Acids Research, 2016, 44(21):10074-10090. [37] NIE F P, LI J, LI X L.Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne, Australia:International Joint Conferences on Artificial Intelligence Organization, 2017:2564-2570. [38] HAN J W, XU J L, NIE F P, et al.Multi-view K-means clustering with adaptive sparse memberships and weight allocation[EB/OL].[2021-05-11].https://www.researchgate.net/publication/340572521_Multi-view_K-Means_Clustering_with_Adaptive_Sparse_Memberships_and_Weight_Allocation. [39] ZHAN K, ZHANG C Q, GUAN J P, et al.Graph learning for multiview clustering[J].IEEE Transactions on Cybernetics, 2018, 48(10):2887-2895. |