[1] GLYMOUR C, ZHANG K, SPIRTES P.Review of causal discovery methods based on graphical models[J].Frontiers in Genetics, 2019, 10:524. [2] 丁梦远, 兰旭光, 彭茹, 等.机器推理的进展与展望[J].模式识别与人工智能, 2021, 34(1):1-13. DING M Y, LAN X G, PENG R, et al.Progress and prospect of machine reasoning[J].Pattern Recognition and Artificial Intelligence, 2021, 34(1):1-13.(in Chinese) [3] CAI R C, ZHANG Z J, HAO Z F.Causal gene identification using combinatorial V-structure search[J].Neural Networks, 2013, 43:63-71. [4] OMBADI M, NGUYEN P, SOROOSHIAN S, et al.Evaluation of methods for causal discovery in hydrometeorological systems[J].Water Resources Research, 2020, 56(7):1-10. [5] PEARL J.Causality:models, reasoning, and inference[M]. 2nd ed.New York, USA:Cambridge University Press, 2009. [6] SPIRTES P, GLYMOUR C, SCHEINES R.Causation, prediction, and search[M].Cambridge, USA:MIT Press, 2001. [7] KOLLER D, FRIEDMAN N.Probabilistic graphical models:principles and techniques[M].Cambridge, USA:MIT Press, 2009. [8] MAI G Z, HONG Y H, CHEN P H, et al.Distinguish Markov equivalence classes from large-scale linear non-Gaussian data[J].IEEE Access, 2020, 8:10924-10932. [9] ZHANG H, ZHOU S G, YAN C X, et al.Recursively learning causal structures using regression-based conditional independence test[C]//Proceedings of Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:3108-3115. [10] BERGSMA W.Testing conditional independence for continuous random variables[EB/OL].[2022-02-10].https://www.researchgate.net/profile/Wicher-Bergsma/publication/251188458_Testing_conditional_independence_for_continuous_random_variables/links/5406eb460cf2bba34c1e760f/Testing-conditional-independence-for-continuous-random-variables.pdf. [11] ZHANG H, ZHOU S G, ZHANG K, et al.Causal discovery using regression-based conditional independence tests[C]//Proceedings of Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2017:1250-1256. [12] XIE X C, GENG Z.A recursive method for structural learning of directed acyclic graphs[J].Journal of Machine Learning Research, 2008, 9(3):459-483. [13] CAI R C, ZHANG Z J, HAO Z F.SADA:a general framework to support robust causation discovery with theoretical guarantee[EB/OL].[2022-02-10].https://arxiv.org/pdf/1707.01283.pdf. [14] LIU H, ZHOU S G, LAM W, et al.A new hybrid method for learning Bayesian networks:separation and reunion[J].Knowledge-Based Systems, 2017, 121:185-197. [15] 陈铭杰, 张浩, 彭昱忠, 等.基于偏相关性测试的递归式因果推断算法[J].计算机工程, 2022, 48(10):123-129. CHEN M J, ZHANG H, PENG Y Z, et al.Recursive causal inference algorithm based on partial correlation test[J].Computer Engineering, 2022, 48(10):123-129.(in Chinese) [16] 郭珉, 石洪波, 冀素琴.贝叶斯网络结构稀疏学习研究进展[J].模式识别与人工智能, 2016, 29(10):907-923. GUO M, SHI H B, JI S Q.Survey of sparse structure learning of Bayesian networks[J].Pattern Recognition and Artificial Intelligence, 2016, 29(10):907-923.(in Chinese) [17] KALISCH M, BÜHLMANN P.Estimating high-dimensional directed acyclic graphs with the PC-algorithm[J].Journal of Machine Learning Research, 2007, 8(3):613-636. [18] COLOMBO D, MAATHUIS M H.Order-independent constraint-based causal structure learning[J].Journal of Machine Learning Research, 2014, 15(1):3741-3782. [19] BROMBERG F, MARGARITIS D.Improving the reliability of causal discovery from small data sets using argumentation[J].Journal of Machine Learning Research, 2009, 10:301-340. [20] HOYER P O, JANZING D, MOOIJ J, et al.Nonlinear causal discovery with additive noise models[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems.New York, USA:MIT Press, 2008:689-696. [21] MOOIJ J, JANZING D, PETERS J, et al.Regression by dependence minimization and its application to causal inference in additive noise models[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York, USA:ACM Press, 2009:745-752. [22] ARTHUR G, FUKUMIZU K, TEO C H, et al.A kernel statistical test of independence[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2007:585-592. [23] GRETTON A, FUKUMIZU K, HARCHAOUI Z, et al.A fast, consistent kernel two-sample test[EB/OL].[2022-02-10].https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.8330&rep=rep1&type=pdf. [24] FUKUMIZU K, GRETTON A, SUN X H, et al.Kernel measures of conditional dependence[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2008:489-496. [25] ZHANG K, PETERS J, JANZING D, et al.Kernel-based conditional independence test and application in causal discovery[EB/OL].[2022-02-10].https://arxiv.org/ftp/arxiv/papers/1202/1202.3775.pdf. [26] LAURITZEN S L.Graphical models[M].Oxford, USA:Oxford University Press, 1996. [27] 王双成, 苑森淼, 王辉.基于贝叶斯网络的马尔科夫毯预测学习[J].模式识别与人工智能, 2004, 17(1):17-21. WANG S C, YUAN S M, WANG H.Learning Markov blanket prediction based on Bayesian network[J].Pattern Recognition and Artificial Intelligence, 2004, 17(1):17-21.(in Chinese) [28] STROBL E V, ZHANG K, VISWESWARAN S.Approximate kernel-based conditional independence tests for fast non-parametric causal discovery[J].Journal of Causal Inference, 2019, 7(1):1-10. [29] MEEK C.Causal inference and causal explanation with background knowledge[EB/OL].[2022-02-10].https://arxiv.org/ftp/arxiv/papers/1302/1302.4972.pdf. [30] 蔡瑞初, 陈薇, 郝志峰.因果推断与因果性学习研究进展[J].中国人工智能学会通讯, 2020, 10(5):9-14. CAI R C, CHEN W, HAO Z F.Research progress in causal inference and causal learning[J].Journal of Machine Learning and Applications, 2020, 10(5):9-14.(in Chinese) [31] ZHENG X, DAN C, ARAGAM B, et al.Learning sparse nonparametric DAGs[EB/OL].[2022-02-10].https://arxiv.org/abs/1909.13189. |