[1] SCHAPIRE R E,SINGER Y.Improved boosting algorithms using confidence-rated predictions[C]//Proceedings of the 7th Annual Conference on Computational Learning Theory.New York,USA:ACM Press,1998:80-91. [2] BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140. [3] WU Xindong,KUMAR V,QUINLAN J R,et al.Top 10 algorithms in data mining[J].Knowledge and Information Systems,2007,14(1):1-37. [4] 孙博,王建东,陈海燕,等.集成学习中的多样性度量[J].控制与决策,2014(3):385-395. [5] ZHOU Zhihua.When semi-supervised learning meets ensemble learning[C]//Proceedings of the 8th International Workshop on Multiple Classifier Systems.Berlin,Germany:Springer,2009:529-538. [6] CHAPELLE O,SCHÖLKOPF B,ZIEN A.Semi-supervised learning[M].Cambridge,USA:MIT Press,2006:217-235. [7] BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the 7th Annual Conference on Computational Learning Theory.New York,USA:ACM Press,1998:92-100. [8] DALCHÉ-BUC F,GRANDVALET Y,AMBROISE C.Semi-supervised marginboost[EB/OL].[2017-12-20].http://papers.nips.cc/paper/2108-semi-supervised-marginboost.pdf. [9] BENNETT K P,DEMIRIZ A,MACLIN R.Exploiting unlabeled data in ensemble methods[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2002:289-296. [10] 周志华.基于分歧的半监督学习[J].自动化学报,2013,39(11):1871-1878. [11] LI Ming,ZHOU Zhihua.Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples[J].IEEE Transactions on Systems,Man,and Cybernetics,2007,37(6):1088-1098. [12] ZHANG Minling,ZHOU Zhihua.Exploiting unlabeled data to enhance ensemble diversity[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Computer Society,2010:619-628. [13] LAMBERT D M,STOCK J R,ELLRAM L M.Fundamentals of logistics management[EB/OL].[2017-12-20].https://bbs.pinggu.org/a-1194068.html. [14] 苗常青.关于非线性Logistic回归模型的若干讨论[D].扬州:扬州大学,2013. [15] 徐赢,潘有军.一种预测含水率的非线性Logistic模型[J].油气藏评价与开发,2015(5):22-25. |