[1] MAJUMDER S, KEHTARNAVAZ N.Vision and inertial sensing fusion for human action recognition:a review[J].IEEE Sensors Journal, 2021, 21(3):2454-2467. [2] CHEN C, JAFARI R, KEHTARNAVAZ N.Improving human action recognition using fusion of depth camera and inertial sensors[J].IEEE Transactions on Human-Machine Systems, 2015, 45(1):51-61. [3] ROITBERG A, POLLERT T, HAURILET M, et al.Analysis of deep fusion strategies for multi-modal gesture recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:198-206. [4] AHMAD Z, KHAN N.CNN-based multistage gated average fusion for human action recognition using depth and inertial sensors[J].IEEE Sensors Journal, 2021, 21(3):3623-3634. [5] CHEN C, JAFARI R, KEHTARNAVAZ N.A real-time human action recognition system using depth and inertial sensor fusion[J].IEEE Sensors Journal, 2016, 16(3):773-781. [6] CHEN C, HAO H Y, JAFARI R, et al.Weighted fusion of depth and inertial data to improve view invariance for real-time human action recognition[C]//Proceedings of SPIEʼ17.Washington D.C., USA:IEEE Press, 2017:43-51. [7] DAWAR N, KEHTARNAVAZ N.A convolutional neural network-based sensor fusion system for monitoring transition movements in healthcare applications[C]//Proceedings of the 14th IEEE International Conference on Control and Automation.Washington D.C., USA:IEEE Press, 2018:482-485. [8] DAWAR N, KEHTARNAVAZ N.Action detection and recognition in continuous action streams by deep learning-based sensing fusion[J].IEEE Sensors Journal, 2018, 18(23):9660-9668. [9] DAWAR N, OSTADABBAS S, KEHTARNAVAZ N.Data augmentation in deep learning-based fusion of depth and inertial sensing for action recognition[J].IEEE Sensors Letters, 2019, 3(1):1-4. [10] LIU K, CHEN C, JAFARI R, et al.Fusion of inertial and depth sensor data for robust hand gesture recognition[J].IEEE Sensors Journal, 2014, 14(6):1898-1903. [11] TU Z G, XIE W, QIN Q Q, et al.Multi-stream CNN:learning representations based on human-related regions for action recognition[J].Pattern Recognition, 2018, 79:32-43. [12] HWANG I, CHA G, OH S.Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data[C]//Proceedings of 2017 IEEE International Conference on Multi-Sensor Fusion and Integration for Intelligent Systems.Washington D.C., USA:IEEE Press, 2017:278-283. [13] KAMEL A, SHENG B, YANG P, et al.Deep convolutional neural networks for human action recognition using depth maps and postures[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(9):1806-1819. [14] LI H B, SHRESTHA A, FIORANELLI F, et al.Mult-isensor data fusion for human activities classification and fall detection[C]//Proceedings of 2017 IEEE SENSORSʼ17.Washington D.C., USA:IEEE Press, 2017:1-3. [15] RAMACHANDRAM D, TAYLOR G W.Deep multimodal learning:a survey on recent advances and trends[J].IEEE Signal Processing Magazine, 2017, 34(6):96-108. [16] AHMAD Z, KHAN N.Towards improved human action recognition using convolutional neural networks and multimodal fusion of depth and inertial sensor data[C]//Proceedings of 2018 IEEE International Symposium on Multimedia.Washington D.C., USA:IEEE Press, 2018:223-230. [17] AHMAD Z, KHAN N.Human action recognition using deep multilevel multimodal (M2) fusion of depth and inertial sensors[J].IEEE Sensors Journal, 2020, 20(3):1445-1455. [18] EHATISHAM-UL-HAQ M, JAVED A, AZAM M A, et al.Robust human activity recognition using multimodal feature-level fusion[J].IEEE Access, 2019, 7:60736-60751. [19] RADU V, TONG C, BHATTACHARYA S, et al.Multimodal deep learning for activity and context recognition[C]//Proceedings of ACM Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies.New York, USA:ACM Press, 2018:1-27. [20] HAGHIGHAT M, ABDEL-MOTTALEB M, ALHALABI W.Discriminant correlation analysis:real-time feature level fusion for multimodal biometric recognition[J].IEEE Transactions on Information Forensics and Security, 2016, 11(9):1984-1996. [21] CHEN C, LIU K, KEHTARNAVAZ N.Real-time human action recognition based on depth motion maps[J].Journal of Real-Time Image Processing, 2016, 12(1):155-163. [22] TAN X Y, TRIGGS B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEE Transactions on Image Process, 2010, 19(6):1635-1650. [23] JIANG W C, YIN Z Z.Human activity recognition using wearable sensors by deep convolutional neural networks[C]//Proceedings of the 23rd ACM International Conference on Multimedia.New York, USA:ACM Press, 2015:1307-1310. [24] YANG X D, ZHANG C Y, TIAN Y L.Recognizing actions using depth motion maps-based histograms of oriented gradients[C]//Proceedings of the 20th ACM International Conference on Multimedia.New York, USA:ACM Press, 2012:1057-1060. [25] HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J.Canonical correlation analysis:an overview with application to learning methods[J].Neural Computation, 2004, 16(12):2639-2664. [26] CHEN C, JAFARI R, KEHTARNAVAZ N.UTD-MHAD:a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor[C]//Proceedings of 2015 IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2015:168-172. [27] Kinect2d dataset[EB/OL].[2022-03-10].https://personal.utdallas.edu/~kehtar/Kinect2DatasetReadme.pdf. [28] BULBUL M F, JIANG Y S, MA J W.DMMs-based multiple features fusion for human action recognition[J].International Journal of Multimedia Data Engineering and Management, 2015, 6(4):23-39. [29] HAFEEZ S, JALAL A, KAMAL S.Multi-fusion sensors for action recognition based on discriminative motion cues and random forest[C]//Proceedings of 2021 International Conference on Communication Technologies.Washington D.C., USA:IEEE Press, 2021:91-96. [30] BEN MAHJOUB A, ATRI M.An efficient end-to-end deep learning architecture for activity classification[J].Analog Integrated Circuits and Signal Processing, 2019, 99(1):23-32. [31] ELMADANY N E D, HE Y F, GUAN L.Multimodal learning for human action recognition via bimodal/multimodal hybrid centroid canonical correlation analysis[J].IEEE Transactions on Multimedia, 2019, 21(5):1317-1331. [32] YANG T J, HOU Z J, LIANG J Z, et al.Depth sequential information entropy maps and multi-label subspace learning for human action recognition[J].IEEE Access, 2020, 8:135118-135130. [33] CHEN C, JAFARI R, KEHTARNAVAZ N.Fusion of depth, skeleton, and inertial data for human action recognition[C]//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2016:2712-2716. |