[1] 孙沂琳, 张秋菊, 陈宵燕.软体驱动器研究综述[J]. 机械设计, 2019, 36(2): 9-22. SUN Y L, ZHANG Q J, CHEN X Y.Overview of soft-bodied actuators[J]. Journal of Machine Design, 2019, 36(2): 9-22.(in Chinese) [2] 王海涛, 彭熙凤, 林本末.软体机器人研究现状[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 94-106. WANG H T, PENG X F, LIN B M.Research development of doft robots[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(2): 94-106.(in Chinese) [3] LUCA S, JOSIE H, PERLA M, et al. Visual model-free soft-structure reconstruction for proprioception using tactile arrays[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2479-2484. [4] HA J, KIM D, JO S.Use of deep learning for position estimation and control of soft glove[C]//Proceedings of International Conference on Control, Automation and Systems.[S.l.]:ICCAS, 2018:570-574. [5] MOHAMED M H, WAGDY S H, ATALLA M A, et al. A proposed soft pneumatic actuator control based on angle estimation from data-driven model[J]. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2020, 234(6): 612-625. [6] KOIVIKKO A, RAEI E S, MOSALLAEI M.Screen-printed curvature sensors for soft robots[J]. IEEE Sensors Journal, 2018, 18(1): 223-230. [7] YANG M, LIU Q D, NAQAWE H S, et al. Movement detection in soft robotic gripper using sinusoidally embedded fiber optic sensor[J]. Sensors, 2020, 20(5): 1-11. [8] 高东, 孟凡勇, 宋言明, 等. 植入光纤光栅的软体驱动器形状传感研究[J]. 仪器仪表学报, 2019, 40(2): 155-162. GAO D, MENG F Y, SONG Y M, et al. Research on the shape sensing of embedded fiber Bragg grating for soft actuator[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 155-162.(in Chinese) [9] YANG H, XU M, LI W, et al. Design and implementation of a soft robotic arm driven by SMA coils[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6108-6116. [10] DIPIETRO L, SABATINI A M, DARIO P.A survey of glove-based systems and their applications[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), 2008, 38(4): 461-482. [11] GERBONI G, DIODATO A, CIUTI G, et al. Feedback control of soft robot actuators via commercial flex bend sensors[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1881-1888. [12] 文力, 王贺升.软体机器人研究展望:结构、驱动与控制[J]. 机器人, 2018, 40(5): 577. WEN L, WANG H S.Research prospect of soft robot:structure, drive and control[J]. Robot, 2018, 40(5): 577.(in Chinese) [13] LIN N, WU P, WANG M, et al. IMU-based active safe control of a variable stiffness soft actuator[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1247-1253. [14] ZHANG Y, SU M, LI M, et al. A spatial soft module actuated by SMA coil[C]//Proceedings of 2017 IEEE International Conference on Mechatronics and Automation.Washington D.C., USA:IEEE Press, 2017:677-682. [15] YIRMIBESOGLU O D, MENGUC Y.Hybrid soft sensor with embedded IMUs to measure motion[C]//Proceedings of 2016 IEEE International Conference on Automation Science and Engineering.Washington D.C., USA:IEEE Press, 2016:798-804. [16] AGUILETA A A, BRENA R F, MAYORA O, et al. Multi-sensor fusion for activity recognition-a survey[J]. Sensors, 2020, 19(17): 1-41. [17] WU R T, JAHANSHAHI M R.Data fusion approaches for structural health monitoring and system identification:past, present, and future[J]. Structural Health Monitoring, 2020, 19(2): 552-586. [18] MA D, ZHOU T, CHEN J, et al. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. Nuclear Engineering and Design, 2017, 320:400-408. [19] 张亮亮, 张明艳, 程凡永, 等. 基于深度学习的脸部年龄预测[J]. 计算机工程, 2021, 47(5): 267-272. ZHANG L L, ZHANG M Y, CHENG F Y, et al. Face age prediction based on deep learning[J]. Computer Engineering, 2021, 47(5): 267-272.(in Chinese) [20] HAN S, KIM T, KIM D, et al. Use of deep learning for characterization of microfluidic soft sensors[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 873-880. [21] PONRAJ G, REN H.Sensor fusion of leap motion controller and flex sensors using Kalman filter for human finger tracking[J]. IEEE Sensors Journal, 2018, 6(3): 2042-2049. [22] LUNNI D, GIORDANO G, SINIBALDI E, et al. Shape estimation based on Kalman filtering:towards fully soft proprioception[C]//Proceedings of IEEE International Conference on Soft Robotics.Washington D.C., USA:IEEE Press, 2018:541-546. [23] 璩晶磊, 李少波, 张成龙.基于模糊证据理论的多传感器数据融合算法[J]. 仪表技术与传感器, 2017(10): 118-122.QU J L, LI S B, ZHANG C L.Multi-sensor data fusion algorithm based on fuzzy evidence theory[J]. Instrument Technique and Sensor, 2017(10): 118-122.(in Chinese) |