1 |
JANA G K , GUPTA A , DAS A , et al. Herbal treatment to skin diseases: a global approach. Drug Invention Today, 2010, 2 (8): 54- 67.
|
2 |
唐超颖. 基于可见光图像估计黑色素分布的光学快捷算法. 计算机工程, 2016, 42 (8): 227- 232.
doi: 10.3969/j.issn.1000-3428.2016.08.040
|
|
TANG C Y . Fast optical algorithm for melanin distribution estimation based on visible image. Computer Engineering, 2016, 42 (8): 227- 232.
doi: 10.3969/j.issn.1000-3428.2016.08.040
|
3 |
PATHAN S , PRABHU K G , SIDDALINGASWAMY P C . Techniques and algorithms for computer aided diagnosis of pigmented skin lesions-a review. Biomedical Signal Processing and Control, 2018, 39, 237- 262.
doi: 10.1016/j.bspc.2017.07.010
|
4 |
LU X , GU Y , YANG L , et al. Multi-level 3D densenets for false-positive reduction in lung nodule detection based on chest computed tomography. Current Medical Imaging, 2020, 16 (8): 1004- 1021.
doi: 10.2174/1573405615666191113122840
|
5 |
赵文慧, 杨霄, 孟丽洁. 充分利用多尺度特征改进UNet实现皮肤病变分割. 电子测量技术, 2022, 45 (2): 110- 116.
doi: 10.19651/j.cnki.emt.2108213
|
|
ZHAO W H , YANG X , MENG L J . Improved UNet for skin lesion segmentation by leveraging multi-scale features. Electronic Measurement Technology, 2022, 45 (2): 110- 116.
doi: 10.19651/j.cnki.emt.2108213
|
6 |
HUANG H W , HSU B W Y , LEE C H , et al. Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers. The Journal of Dermatology, 2021, 48 (3): 310- 316.
doi: 10.1111/1346-8138.15683
|
7 |
THURNHOFER-HEMSI K , DOMÍNGUEZ E . A convolutional neural network framework for accurate skin cancer detection. Neural Processing Letters, 2020, 53 (5): 1- 21.
|
8 |
KHAN M A , MUHAMMAD K , SHARIF M , et al. Intelligent fusion-assisted skin lesion localization and classification for smart healthcare. Neural Computing and Applications, 2021, 43 (11): 1- 16.
|
9 |
KHAN M A , ZHANG Y D , SHARIF M , et al. Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification. Computers & Electrical Engineering, 2021, 90, 106956.
|
10 |
SAE-LIM W, WETTAYAPRASIT W, AIYARAK P. Convolutional neural networks using MobileNet for skin lesion classification[C]//Proceedings of the 16th International Joint Conference on Computer Science and Software Engineering. Washington D.C., USA: IEEE Press, 2019: 242-247.
|
11 |
AL-MASNI M A , KIM D H , KIM T S . Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer Methods and Programs in Biomedicine, 2020, 190, 105351.
doi: 10.1016/j.cmpb.2020.105351
|
12 |
GONG A , YAO X J , LIN W . Classification for dermoscopy images using convolutional neural networks based on the ensemble of individual advantage and group decision. IEEE Access, 2020, 8, 155337- 155351.
doi: 10.1109/ACCESS.2020.3019210
|
13 |
罗清, 周维, 马梓钧, 等. 基于FL-ResNet50的皮肤镜图像分类方法. 激光与光电子学进展, 2020, 57 (18): 181022.
URL
|
|
LUO Q , ZHOU W , MA Z J , et al. Dermatoscope image classification method based on FL-ResNet50. Laser & Optoelectronics Progress, 2020, 57 (18): 181022.
URL
|
14 |
GU Y , CHI J Q , LIU J Q , et al. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Computers in Biology and Medicine, 2021, 137, 104806.
|
15 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2022: 9992-10002.
|
16 |
LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 11966-11976.
|
17 |
XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 5987-5995.
|
18 |
|
19 |
GU Y , LU X Q , ZHANG B H , et al. Automatic lung nodule detection using multi-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography. PLoS One, 2019, 14 (1): e0210551.
|
20 |
YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. Washington D.C., USA: IEEE Press, 2021: 11863-11874.
|
21 |
WEBB B S , DHRUV N T , SOLOMON S G , et al. Early and late mechanisms of surround suppression in striate cortex of macaque. The Journal of Neuroscience, 2005, 25 (50): 11666- 11675.
|
22 |
|
23 |
GU Y , LU X Q , YANG L D , et al. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Computers in Biology and Medicine, 2018, 103, 220- 231.
|
24 |
|
25 |
HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 558-567.
|
26 |
CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration[EB/OL]. [2022-09-10]. https://arxiv.org/abs/1902.03368.
|
27 |
TSCHANDL P , ROSENDAHL C , KITTLER H . The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 2018, 5, 180161.
|
28 |
谷宇. 基于深度卷积神经网络的CT影像肺结节检测技术研究[D]. 上海: 上海大学, 2019.
|
|
GU Y. Research on detection technology of lung nodules in CT images based on deep convolution neural network[D]. Shanghai: Shanghai University, 2019. (in Chinese)
|
29 |
TOUVRON H, CORD M, SABLAYROLLES A, et al. Going deeper with image transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2022: 32-42.
|
30 |
MATSOUKAS C, HASLUM J F, SÖDERBERG M, et al. Is it time to replace CNNs with transformers for medical images?[EB/OL]. [2022-09-10]. https://arxiv.org/abs/2108.09038.
|