作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (10): 239-246, 254. doi: 10.19678/j.issn.1000-3428.0066050

• 图形图像处理 • 上一篇    下一篇

基于改进ConvNeXt的皮肤镜图像分类方法

李建威1, 吕晓琪1,2,*, 谷宇1   

  1. 1. 内蒙古科技大学 信息工程学院 内蒙古自治区模式识别与智能图像处理重点实验室, 内蒙古自治区 包头 014010
    2. 内蒙古工业大学 信息工程学院, 呼和浩特 010051
  • 收稿日期:2022-10-20 出版日期:2023-10-15 发布日期:2023-01-03
  • 通讯作者: 吕晓琪
  • 作者简介:

    李建威(1997-), 男, 硕士研究生, 主研方向为医学图像处理、深度学习

    谷宇, 副教授、博士

  • 基金资助:
    国家自然科学基金(62001255); 国家自然科学基金(61841204); 国家自然科学基金(61771266); 中央引导地方科技发展资金(2021ZY0004); 内蒙古自治区自然科学基金(2019MS06003); 内蒙古自治区自然科学基金(2015MS0604); 内蒙古自治区高等学校青年科技英才计划项目(NJYT23057); 教育部“春晖计划”合作科研项目(教外司留[2019]1383号); 内蒙古科技大学基本科研业务费专项资金优秀青年基金(2022042)

Dermoscopy Image Classification Method Based on Improved ConvNeXt

Jianwei LI1, Xiaoqi LÜ1,2,*, Yu GU1   

  1. 1. Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Progressing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia Autonomous Region, China
    2. School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
  • Received:2022-10-20 Online:2023-10-15 Published:2023-01-03
  • Contact: Xiaoqi LÜ

摘要:

皮肤癌是最致命的癌症之一,对皮肤镜图像进行精确分类尤为关键,然而现有的皮肤镜图像存在形态复杂、样本数量较少的问题,导致现有的自动分类方法难以提取图像特征信息,误判率较高。提出一种改进ConvNeXt的方法,并构建SE-SimAM-ConvNeXt模型。以ConvNeXt为基础网络,加入SimAM无参注意力模块,提升网络的特征提取能力,并在基础网络中引入通道注意力机制,增强ConvNeXt对潜在关键特征的挖掘能力。在训练初始时加入预热机制Cosine Warmup,在该过程中使用余弦函数值进行学习率的衰减,进一步加速ConvNeXt的收敛,提高ConvNeXt模型的分类能力。在HAM10000皮肤数据集上的实验结果表明,该模型的分类准确率、精确度、召回率、特异性分别为92.9%、85.3%、78.0%、97.5%,具有较好的皮肤镜图像分类能力,对皮肤癌病变的辅助诊断有一定程度的应用价值,可帮助皮肤科医生对皮肤癌做进一步的诊断。

关键词: 皮肤镜图像分类, ConvNeXt网络, 通道注意力机制, SimAM无参注意力, 预热机制

Abstract:

Skin cancer is one of the deadliest cancers, and it is particularly critical to accurately classify dermoscopy images. However, the existing dermoscopy images have complex shapes and a small number of samples, which makes it difficult for the existing automatic classification methods to extract image feature information; these methods also have a high error rate. To solve this problem, this paper proposes an improved ConvNeXt method and build, SE-SimAM-ConvNeXt model. First, with ConvNeXt as the basic network, the SimAM nonparametric attention module is added to improve the network's feature extraction capability. Second, channel attention is added to the basic network to enhance the mining ability of ConvNeXt for potential key features. Finally, the Cosine Warmup mechanism is added at the beginning of training, and the cosine function value is used to attenuate the learning rate during the process, further accelerating the convergence of ConvNeXt and improving the classification ability of the ConvNeXt model. The experimental results on the HAM10000 skin dataset show that the classification accuracy, precision, recall, and specificity of the model reach 92.9%, 85.3%, 78.0%, and 97.5%, respectively, and is demonstrated effective classification capability for dermoscopy images. This bears significant potential in aiding the auxiliary diagnosis of skin cancer lesions, providing valuable assistance to dermatologists in making accurate diagnoses of skin cancer.

Key words: dermoscopy image classification, ConvNeXt network, channel attention mechanism, SimAM without reference attention, warmup mechanism